
422

Optimisation of a colour segmentation and tracking
algorithm for real-time FPGA implementation

C.T. Johnston, D.G. Bailey, K.T. Gribbon
Institute of Information Sciences and Technology, Massey University, Palmerston North.
Email: c.t.johnston@massey.ac.nz, d.g.bailey@massey.ac.nz, k.t.gribbon@massey.ac.nz

Abstract
This paper concentrates on the optimisations and tradeoffs required to implement a colour segmentation based
object tracking algorithm on a small Field Programmable Gate Array (FPGA). The algorithm consists of colour
conversion, segmentation and labelling, morphological filtering, and bounding box based object recognition, and
is able to track up to 4 independent coloured targets. By optimising and adapting the algorithm, the object
tracking module occupies less than 10% of a Spartan 2 FPGA (XC2S200) and operates at a clock frequency of
27 MHz.

Keywords: FPGA, object tracking, image processing, real-time systems

1 Introduction
Object tracking often involves the use of a camera to
provide scene data from which the motion of real-
world objects is mapped to system controls [1].
Object tracking for control-based applications usually
requires the use of a real-time system as sensing
delays in the input can cause instability in closed-loop
control. This is particularly important if the user must
receive sensory feedback from the system.

While image processing at video rates can be
achieved on a serial processor such as a desktop
computer, the required hardware is quite
cumbersome. Furthermore, as the number of objects
that need to be detected and reliably tracked increases,
the real-time processing capabilities of even the
fastest desktop computer can be challenged.

This is due to several factors such as the large data set
represented by a captured image, and the complex
operations which may need to be performed on an
image. At real-time video rates of 25 frames per
second a single operation performed on every pixel of
a 768 by 576 colour image (PAL frame) requires 33
million operations per second. This does not take into
account the overhead of storing and retrieving pixel
values. Tracking algorithms require several operations
to be performed on each pixel in the image resulting
in a large number of operations per second.

Field programmable gate arrays (FPGAs) provide an
alternative to using serial processors. Continual
advances in the size and functionality of FPGAs over
recent years has resulted in an increasing interest in
their use as implementation platforms for real-time
video processing [2].

An FPGA consists of a matrix of logic blocks that are
connected by a switching network. Both the logic
blocks and the switching network are reprogrammable
allowing application specific hardware to be
constructed, while at the same time maintaining the
ability to change the functionality of the system with
ease. Performance gains are obtained from bypassing
the fetch-decode-execute overhead of serial
processors and by using the inherent parallelism of
digital hardware to exploit concurrency within the
algorithm. As a result, FPGAs may achieve the same
computational throughput with operating clock
frequencies of an order of magnitude lower than high-
end serial processors, lowering power consumption.

In a previous paper [3] we provided an overview of
the object tracking algorithm, focusing on low cost
real-time signal processing on an FPGA. This paper
outlines the tradeoffs and optimisations required for
implementing the algorithm on a small FPGA. Design
emphasis has been placed on minimising the logic and
resource utilisation of the implementation, leaving
resources for additional functionality that will use the
tracking information in the desired application.
Design decisions to reduce hardware requirements
place a limit on the type of object tracking algorithms
that can be implemented [4].

To demonstrate the usefulness of the tracking
algorithm, we have implemented a simple interactive
game that uses arm movements as input.

Section two discusses in detail the elements which
make up the vision system and tracking algorithm. By
considering the purpose of each step within the
algorithm, optimisations and tradeoffs for FPGA
implementation are discussed. Section three presents
the resource utilisation of the final tracking system
that was implemented.

423

2 Image processing system
Two major forms of parallelism exist in low-level
image processing [5]: spatial parallelism, in which the
image is divided in to multiple sections and processed
concurrently, and temporal parallelism, where the
algorithm may be represented as a time sequence of
simple concurrent operations. Our algorithm exploits
temporal parallelism by building a pipeline of
concurrent operations that feed data from one
operation to the next. This removes the need to have
multiple access or copies of the image in memory and
makes it possible to operate directly from the input
stream provided by the video ADC. The stream-based
processing also limits the type of algorithms that can
be easily implemented [4].

Several object tracking techniques could be used in
this application. Direct, motion based algorithms
work on differences between successive frames. By
detecting the differences between frames, the motion
of an object may be inferred directly. Such motion
based methods require frame buffering and were not
considered in this application for that reason.

An alternative is to use a segmentation based
approach, where the target objects are segmented
from the rest of the scene in the captured image. The
object is then tracked by considering the change of
position in successive frames.

Segmentation partitions the captured image into
several disjoint object regions based on common
uniform feature characteristics [6]. One simple
method is to segment the image based on colour by
applying thresholds to each pixel. This is ideal for
stream processing because thresholding is a point
operation which can be implemented easily on the
FPGA. Colour based segmentation requires care to be
taken in the environmental setup as discussed in the
next section. A block diagram of the complete system
is shown below in Figure 1.

Figure 1: Block diagram of system

The tracking algorithm is broken into four stages:
colour conversion, segmentation and region labelling,
morphological filtering, and object detection. The
pixel stream from the image capture sub-system is
converted to a YUV colour space to remove the
inherent interdependence between luminance and
chrominance in the RGB colour space. Segmentation

is performed using colour thresholding to associate
each pixel with a particular colour class. A
morphological filter is then used to remove any noise
pixels that are not part of object regions. Finally,
objects are detected by constructing a bounding box
which encloses all of the pixels within a colour class.
For each object, region parameters such as position,
size, orientation and other useful information may be
determined.

A strict timing constraint is imposed with pixels
arriving at a rate of 13.5MHz, allowing approximately
74 ns per pixel to perform all four operations in
Figure 1 . This inevitably requires applying both
coarse-grain (between operations in the processing
chain) and fine-grain pipelining (within operations) to
ensure meeting of timing constraints.

2.1 Environment
Our aim is to work in a relatively unstructured
environment. An unstructured environment (such as
no blue/green screen) provides greater system
flexibility and portability but can make reliable
segmentation more difficult because of the need to
distinguish the objects of interest from any other
objects that may be present within the image. This
limitation may be overcome by restricting the target
objects to saturated and distinctive colours to enable
them to be distinguished from the unstructured
background.

Augmenting the unstructured environment with
structured colour in this way is a compromise that
enables a much simpler segmentation algorithm to be
used. In the context of the game, the user is required
to wear or hold fluorescent (highly saturated and
intense) colour “markers”. Each marker has a
different colour to allow the tracking algorithm to
differentiate between them. Each object to be
identified and tracked must have a unique uniform
colour associated with it; this is called its colour class.

Detecting and segmenting purely by colour introduces
a number of interacting variables that must be
correctly adjusted. In addition to aperture adjustment
of the camera and tuning of the colour thresholds for
each target object, lighting within the environment
also plays an important role. The colour of the
lighting and placement within the environment has a
dramatic affect on the reliability of the algorithm.
Lights positioned within the camera field of view can
introduce noise pixels into the image. Frontal spot
lighting can cause the pixels of the target objects to
saturate so that they appear white. Thus diffuse
lighting is preferred.

2.2 Image capture
Image capture is performed using a video camera and
ADC converter (decoder chip) which digitises the
analogue signal from the camera into a stream of 16-

424

bit RGB (5:6:5) pixels. The stream is interlaced with
successive fields providing the odd and even lines of
the PAL frame.

The algorithm operates on each field of the interlaced
frame. The effective image size is therefore reduced
to 768 by 288 pixels. In our implementation the
decrease in spatial resolution is justified because
tracked objects are large in relation to the size of the
frame. Processing each field independently increases
the temporal sampling frequency to 50 samples per
second. It also avoids “tearing” resulting from the
rapid movement of objects between successive fields.

2.3 Colour space transformation
The simplest form of colour segmentation is to
independently threshold the red, green and blue
components of each pixel. Those pixels that are
within all three ranges are classified as belonging to
the corresponding colour class. Unfortunately, such
segmentation is frequently unreliable because any
change in the intensity of a colour results in a
diagonal movement within RGB space, with a
significant effect on all of the components [7]. To
allow for this, the colour region has to be quite large
with the significant likelihood of background pixels
being misclassified into each colour class. This
intensity interdependence problem may be overcome
by transforming the image to another colour space
such as HSI or YUV. Each of these separates the
colour components from the intensity or luminance.
The transformation from RGB to YUV colour space
consists of a coordinate rotation to map the RGB cube
onto the Y, U and V axes. Transforming from RGB to
HSI involves mapping the RGB cube to a cone and is
computationally more expensive, although it gives
better intensity independence [8].

The YUV colour space is widely used in video and
broadcasting [9]. The standard RGB to YUV
transformation matrix involves several floating point
multiplication operations which are computationally
expensive for an FPGA implementation:

0.299 0.587 0.114
0.169 0.331 0.500
0.500 0.419 0.081

Y R
U G
V B

     
     = − −     
     − −     

(1)

A more efficient alternative is to replace equation (1)
with the modified YUV colour space transform
proposed in [7]. This removes the multiplications,
replacing them with simple addition, subtraction and
shift operations:

1 1 1
4 2 4
1 1 1
4 2 4
1 1
2 20

Y R
U G
V B

′     
    ′ = −    
 ′   −    

 (2)

Note that this transformation is only similar to the
standard YUV transform in that it separates the

luminance and chrominance components, and the two
chrominance components are orthogonal. However in
this application, we do not need true YUV, so this
simplification is valid. Although the R, G, and B
components have different precisions, as far as
equations (1) and (2) are concerned, they can be
treated as fractions between 0 and 1. Equation (2) will
give 7 bits of precision for each component.

As equation (2) is a coordinate rotation, any change to
the intensity will also affect the values of U ′ and V ′ .
Therefore, to make the U ′ and V ′ less sensitive to
illumination, we want to normalise them by the
intensity, Y ′ . This caused problems because for the
saturated colours chosen for the markers, the value of
Y ′ can be lower than that of V ′ . This can shift the
normalised values outside the range -1 to 1. This may
be avoided by normalising by

max(, ,)Y R G B′′ = (3)

instead of Y ′ . Y ′′ would have 6 bits precision.

One consequence of the normalisation is that the
decreased dependence on light intensity, comes at the
cost of colour specificity. Normalisation has the
tendency to detect all colours with similar hue. Thus,
there is a trade off between intensity insensitivity and
colour selectivity.

The FPGA implementation calculates Y ′′ from
equation (3), and U ′ and V ′ from equation (2) in
parallel for each pixel in the input stream. This makes
it possible for the whole conversion to occur in one
clock cycle.

2.4 Colour thresholding
For each colour class, the normalised components are
independently thresholded using

minY Y′′ ′′> , min max
UU U
Y
′

′ ′< <
′′

 and min max
VV V
Y
′

′ ′< <
′′

 (4)

Only a single threshold is required for Y ′′ because the
target colours are bright. A pixel belongs to a colour
class only if it is within all three Y ′′ , U ′ , and V ′
ranges, and is labelled with a unique ID
corresponding to that particular class. As each colour
class corresponds to an object being tracked, all pixels
within the image are labelled as part of an object
region or as part of the background. This reduces the
raw pixel data to a unique ID that depends on the
number of tracking objects defined. For N colour
classes there will be 1N + (to include the background
label) unique IDs.

Equation (4) includes a division operation which is
costly to implement in hardware, using a large amount
of FPGA resources and introducing long
combinatorial delays if not pipelined [4]. The division
can be removed algebraically by multiplying the U ′ ,

425

and V ′ components of equation (4) through by Y ′′ to
give

min maxY U U Y U′′ ′ ′ ′′ ′< < and min maxY V V Y V′′ ′ ′ ′′ ′< < (5)

The resulting multiplications are less expensive than
the divisions. However, as is shown in the next
section, even these multiplications may be eliminated.

2.5 Lookup table optimisation
To perform segmentation and labelling of N colour
classes, 4N multiplications and 5N comparisons
must be made on each pixel after performing the
colour transformation. For real-time operation, each
colour class must have separate hardware because all
N sets of comparisons must be performed per clock
cycle. These operations can therefore consume
significant resources on the FPGA if performed in
parallel.

Due to the proliferation of small dedicated on-chip
RAM resources on many of today’s FPGAs (Xilinx
calls this Block RAM), a lookup table (LUT) can be
used to perform the thresholding, normalisation and
labelling in a single step. This saves on fabric
resource utilisation, combinatorial logic delays and
pipeline latency.

The LUT method involves pre-calculating the result
of equation (5) for all valid input values. On
initialisation, the resulting values are loaded into local
memory on the FPGA (in Block RAM). All of the
tests of equations (4) and (5) could be performed in
one step, requiring 220 entries in the LUT table (6
address bits for Y ′′ and 7 each for U ′ and V ′).
However, since the U ′ and V ′ thresholds are
independent, they may be separated, reducing lookup
to 2 tables of 213 entries each. Each entry would
produce a single bit result indicating whether or not
the colour is within the thresholded range.

Each Block RAM on the target FPGA has 212 bits,
therefore 4 Block RAMs would be required for each
colour class. Again this is expensive in terms of
resources. By reducing the precision of Y ′′ , U ′ and
V ′ , a compromise can be made between precision
and resource utilisation. As the RGB inputs only have
5 or 6 bits precision, reducing the precision of U ′ and
V ′ to 6 bits is reasonable. The Y ′′ is used primarily
for normalisation, and some normalisation will take
place even when relatively low precision is used.
Therefore the Y ′′ component was reduced to 3 bits.
The net effect is that the Y U′′ ′ and Y V′′ ′ tables
requires 29 bits each.

Multiple colours may be tested simultaneously
because several tables in parallel would use the same
address (the actual colour of the pixel being
classified), but have 1 bit for each colour class being
tested. This arrangement is illustrated in Figure 2.

Figure 2: Representation within a LUT element

In our implementation, we test 4 colours
simultaneously in this way. Both Y U′′ ′ and Y V′′ ′ for
4 colours may be combined into a single Block RAM.
The RAM is dual-ported, allowing both tables to be
accessed simultaneously. This configuration means
the first half of the Block RAM stores the Y U′′ ′ table
and the second half stores Y V′′ ′ . The first bit of the
index thus specifies the table to be accessed. The next
3 bits of the index correspond to the Y ′′ value and the
final 6 bits are either the U ′ or V ′ value of the
transformed pixel.

The two 4-bit colour class mask results are bit-wise
ANDed together. If the result is 0000 the pixel does
not belong to any of the colour classes and is
considered as a background pixel. If there is a single 1
in any bit position, then the position of the 1
corresponds to the class of the object. The case of
multiple ones is by definition invalid, because a pixel
may belong to at most one class.

The LUT approach to colour classification works with
any number of colour classes (subject to resource
limitations), and has a constant processing time of 1
clock cycle.

2.6 Object recognition
A bounding box [9] provides a simple method for
calculating the position, size and aspect ratio of a
labelled region. With a little additional processing, the
bounding box can also be employed to give the
orientation of a non-symmetric object.

The bounding box is defined by the topmost,
bottommost, leftmost and rightmost pixels belonging
to a particular colour class. The method works by
recording the co-ordinates of the first pixel of the
labelled region in a raster scan. This gives the top of
the box. Then with each successive line the x co-
ordinate of any pixel in the labelled region is
compared with the recorded co-ordinates of the
current left (min) and right sides (max) of the box.
These are updated if the detected pixel is outside the
present bounds. Finally the last pixel in the labelled
region is used to give the y co-ordinate for the bottom
of the box.

Each target object and thus colour class has its own
bounding box. Thus all bounding boxes must be
calculated in parallel during the processing of the
field. Separate hardware and a local data structure can
be built to keep track of each bounding box. However,
as each pixel is labelled as part of a single colour class

426

(overlapping classes are invalid) only a single
bounding box is adjusted for each pixel. Therefore,
the use of duplicated hardware is inefficient as only
one instance will be used at a time.

Instead, we can share a single instance of the
bounding box hardware. This is multiplexed between
the data structures containing information for each
bounding box, depending on the colour class. By
configuring logic cells to act as on-chip memory, an
array of bounding box structures may be created to
store the required data, with the multiplexing
performed implicitly though the address port. As the
clock frequency of our design is twice that of the
pixel data rate, the RAM can be single ported. This
allows a read and comparison of the bounding box
data with the pixel position on the first clock cycle,
with the results to be written back to RAM on the
second clock cycle.

After scanning through the entire field each bounding
box will have been successfully constructed. Useful
information about the bounding box can be extracted
during the vertical blanking period and be used to
control any application that can map this information
to some useful function. For example:
• The centre of the bounding box will approximate

the centre and thus position of the target object. A
simple method for calculating this is to add the top
and bottom and left and right coordinates, shifting
each result one bit to the right to divide by two.

• The size is given by the width and the height
(difference between the left and right, and the top
and bottom). From this the distance from the
camera to the object may be inferred.

• The aspect ratio is given as the ratio of the width
to the height. The user can twist the colour
markers to change the aspect ratio, and this may
be used in a similar manner to a mouse click.

• The orientation of an elongated object may be
determined by augmenting the bounding box. For
each row within the image, if the leftmost
boundary is adjusted an accumulator is
decremented, and if the rightmost boundary is
adjusted the accumulator is incremented. For a
rod-like object at an angle, one side will be
extended more frequently than the other and this is
reflected in the sign of the accumulator.

The bounding box method of object recognition is
sensitive to noise on the boundary pixels which can
also introduce jitter into the detected position. These
introduce an uncertainty or noise into the tracking
parameters. More accurate information can be derived
by smoothing tracking information over a series of
fields, at the expense of additional logic resources.

2.7 Morphological filtering
After testing the initial algorithm, we found that even
with adequate tuning there were isolated noise pixels

associated with each colour class. Any stray pixel will
cause the box to encompass the noise pixel, leading to
the erroneous calculation of bounding boxes and
consequently the derived tracking information. Pixels
can be labelled incorrectly for several reasons
including: objects of similar colour to the target in the
environment, noise introduced by the image capture
sub-system, specular reflections, and high contrast
edges [10]. To remove these mislabelled pixels we
employ a morphological erosion filter with a two by
two structuring element.

This filter will remove any pixel labels that are not
part of a group of pixels in a square four element
window. This was found to be sufficient to remove
most of the noise as long as the environment lighting,
image capture sub-system (including aperture) and
colour thresholds have been set up appropriately.
Filtering cannot remove mislabelled pixels as a result
of an object of similar colour to the target being
within the captured environment.

The two by two filter is separable which means that
filtering can be performed independently using a two
element window in each of the horizontal and vertical
directions. Thus the current pixel is first compared
with the previous pixel (its left neighbour), by using a
bitwise AND of the colour class masks. If the
previous pixel belongs to the same class, it will be
unchanged, but if the class is different, the result will
be 0. The result is stored into the corresponding
location in a line buffer. The result is also compared
with the class label of the pixel from the previous line,
obtained from the line buffer. This results in the filter
using the bottom line from the previous frame when
operating on the top line of the frame and the right
most pixel from the previous line when operating on
the left most pixel.

A single Block RAM is used for the line buffer,
allowing a maximum line length of 1024 pixels (for a
4 bit colour class mask). Single-ported RAM is used,
resulting in a two clock cycle pipeline to perform the
filtering. In the first cycle the horizontal filter is
applied, and the value from the previous row is read
from the line buffer. The second is used to do the
vertical filtering and write the horizontal filter result
to the line buffer. The use of the colour class mask
enables all classes to be filtered in parallel with
simple bitwise AND operations in constant time.

In some instances this filter does not remove all noise;
one way to reduce such noise would be to increase the
window size of the morphological filter.
Alternatively, a more complex region labelling sub-
system could be implemented such as one based on
connected component labelling. However both of
these would come at the cost of increased on-chip
memory and logic usage. We found that in most
situations our system worked satisfactorily after
careful adjustments to the lighting and adequate
tuning.

427

3 Results
The resource utilisation for the tracking algorithm is
shown below in Table 1. The target device is a
XC2S200, a low cost and small sized FPGA. The
resource requirements of each step were estimated by
removing each part of the algorithm and calculating
the difference in size that was given by the hardware
generation tools.

Table 1: Resource utilisation of target device (Xilinx
Spartan-II XC2S200)

 LUT
RAMs

Logic
LUT

Flip
Flops

Block
RAM

Video decoder 111 78
Colour conversion 25 15
Segmentation and
region labelling

 124 147 1

Morphological filter 5 12 1
Bounding box 39 76 123
Calculating position
and aspect ratio

 19 10

Total 39 360 385 2
Available 4704 4704 14

The implementation uses approximately 10% of the
available logic resources of the target device. The
logic used to implement the segmentation and region
labelling appears high but thresholding itself accounts
for only 5 logic LUTs and 4 flip flops with the
remaining hardware needed to initialise the lookup
table from off-chip flash memory.

The FPGA implementation operates at only 27 MHz
with 90% area left for control applications. This meets
our aim of a small footprint system, leaving sufficient
room for applications using the tracking information
to be implemented.

4 Summary
Object identification and tracking frequently requires
the use of a real-time image processing system.
Although real-time processing is achievable on serial
processors, it can be beneficial to take advantage of
the parallelism, low cost, and low power consumption
offered by FPGAs.

To implement a compact design, it is necessary to
balance algorithm optimisations and their effect on
the target environment. All such optimisations rely on
assumptions made about the environment and may
restrict the operation of the system.

To reduce resource and logic utilisation the tracking
algorithm uses several optimisations. The colour
transformation has been simplified to remove the
multiplications found in the standard YUV transform.
The LUT-based segmentation and region labelling
combine two costly operations into one step,
eliminating the need for large numbers of parallel
comparators. We have also made trade-offs in the
type of algorithm used to implement this system,
simple colour based segmentation, and the use of a

bounding box over more complex connected
component based region labelling.

The resulting optimised implementation can fit on a
small and low-end FPGA, such as the Xilinx Spartan-
II XC2S200, with sufficient resources still available
for an application to make use of the derived tracking
information. We have demonstrated this by designing
a simple interactive arcade game where the user’s
movement of coloured markers are used as an input
into the game.

5 Acknowledgements
The authors would like to acknowledge the Celoxica
University Programme for generously providing the
DK3 Design Suite.

6 References
[1] L. Baumela and D. Maravall, "Real-time target

tracking," Aerospace and Electronic Systems
Magazine, IEEE, vol. 10, no. 7, pp. 4-7, 1995.

[2] J. Villasenor and B. Hutchings, "The flexibility of
configurable computing," IEEE Signal
Processing Magazine, vol. 15, no. 5, pp. 67-84,
1998.

[3] C. T. Johnston, K. T. Gribbon, and D. G. Bailey,
"FPGA based Remote Object Tracking for Real-
time Control," to appear in Proceedings of
International Conference on Sensing Technology,
Palmerston North, New Zealand, pp. 2005.

[4] C. T. Johnston, K.T. Gribbon, and D. G. Bailey,
"Implementing Image Processing Algorithms on
FPGAs," Proceedings of the Eleventh Electronics
New Zealand Conference, ENZCon’04,
Palmerston North, pp. 118-123, November 2004.

[5] A. Downton and D. Crookes, "Parallel
architectures for image processing," Electronics
& Communication Engineering Journal, vol. 10,
no. 3, pp. 139-151, 1998.

[6] K. R. Castleman, Digital Image Processing, 1 ed.
New Jersey: Prentice-Hall, 1996.

[7] G. Sen Gupta and D. G. Bailey, "A new colour-
space for efficient and robust segmentation,"
Proceedings of Image and Vision conference New
Zealand, Akaroa, N.Z., pp. 315-320, Nov. 2004.

[8] A. Van Dam and J. D. Foley, Fundamentals of
Interactive Computer Graphics. Reading,
Massachusetts: Addison-Wesley, 1982.

[9] J. C. Russ, The Image Processing Handbook,
Fourth ed. Boca Raton: CRC Press, 2002.

[10] K.T. Gribbon, D.G.Bailey, and C. T. Johnston,
"Colour edge enhancement," Proceedings of
Image and Vision conference New Zealand,
Akaroa, N.Z. ,pp. 297-302, Nov. 2004.

