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Abstract 
This paper concentrates on the optimisations and tradeoffs required to implement a colour segmentation based 
object tracking algorithm on a small Field Programmable Gate Array (FPGA). The algorithm consists of colour 
conversion, segmentation and labelling, morphological filtering, and bounding box based object recognition, and 
is able to track up to 4 independent coloured targets. By optimising and adapting the algorithm, the object 
tracking module occupies less than 10% of a Spartan 2 FPGA (XC2S200) and operates at a clock frequency of 
27 MHz. 
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1 Introduction 
Object tracking often involves the use of a camera to 
provide scene data from which the motion of real-
world objects is mapped to system controls [1]. 
Object tracking for control-based applications usually 
requires the use of a real-time system as sensing 
delays in the input can cause instability in closed-loop 
control. This is particularly important if the user must 
receive sensory feedback from the system.  

While image processing at video rates can be 
achieved on a serial processor such as a desktop 
computer, the required hardware is quite 
cumbersome. Furthermore, as the number of objects 
that need to be detected and reliably tracked increases, 
the real-time processing capabilities of even the 
fastest desktop computer can be challenged.  

This is due to several factors such as the large data set 
represented by a captured image, and the complex 
operations which may need to be performed on an 
image. At real-time video rates of 25 frames per 
second a single operation performed on every pixel of 
a 768 by 576 colour image (PAL frame) requires 33 
million operations per second. This does not take into 
account the overhead of storing and retrieving pixel 
values. Tracking algorithms require several operations 
to be performed on each pixel in the image resulting 
in a large number of operations per second. 

Field programmable gate arrays (FPGAs) provide an 
alternative to using serial processors. Continual 
advances in the size and functionality of FPGAs over 
recent years has resulted in an increasing interest in 
their use as implementation platforms for real-time 
video processing [2].  

An FPGA consists of a matrix of logic blocks that are 
connected by a switching network. Both the logic 
blocks and the switching network are reprogrammable 
allowing application specific hardware to be 
constructed, while at the same time maintaining the 
ability to change the functionality of the system with 
ease. Performance gains are obtained from bypassing 
the fetch-decode-execute overhead of serial 
processors and by using the inherent parallelism of 
digital hardware to exploit concurrency within the 
algorithm. As a result, FPGAs may achieve the same 
computational throughput with operating clock 
frequencies of an order of magnitude lower than high-
end serial processors, lowering power consumption.  

In a previous paper [3] we provided an overview of 
the object tracking algorithm, focusing on low cost 
real-time signal processing on an FPGA. This paper 
outlines the tradeoffs and optimisations required for 
implementing the algorithm on a small FPGA. Design 
emphasis has been placed on minimising the logic and 
resource utilisation of the implementation, leaving 
resources for additional functionality that will use the 
tracking information in the desired application. 
Design decisions to reduce hardware requirements 
place a limit on the type of object tracking algorithms 
that can be implemented [4]. 

To demonstrate the usefulness of the tracking 
algorithm, we have implemented a simple interactive 
game that uses arm movements as input.  

Section two discusses in detail the elements which 
make up the vision system and tracking algorithm. By 
considering the purpose of each step within the 
algorithm, optimisations and tradeoffs for FPGA 
implementation are discussed. Section three presents 
the resource utilisation of the final tracking system 
that was implemented. 
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2 Image processing system 
Two major forms of parallelism exist in low-level 
image processing [5]: spatial parallelism, in which the 
image is divided in to multiple sections and processed 
concurrently, and temporal parallelism, where the 
algorithm may be represented as a time sequence of 
simple concurrent operations. Our algorithm exploits 
temporal parallelism by building a pipeline of 
concurrent operations that feed data from one 
operation to the next. This removes the need to have 
multiple access or copies of the image in memory and 
makes it possible to operate directly from the input 
stream provided by the video ADC. The stream-based 
processing also limits the type of algorithms that can 
be easily implemented [4]. 

Several object tracking techniques could be used in 
this application. Direct, motion based algorithms 
work on differences between successive frames. By 
detecting the differences between frames, the motion 
of an object may be inferred directly. Such motion 
based methods require frame buffering and were not 
considered in this application for that reason. 

An alternative is to use a segmentation based 
approach, where the target objects are segmented 
from the rest of the scene in the captured image. The 
object is then tracked by considering the change of 
position in successive frames. 

Segmentation partitions the captured image into 
several disjoint object regions based on common 
uniform feature characteristics [6]. One simple 
method is to segment the image based on colour by 
applying thresholds to each pixel. This is ideal for 
stream processing because thresholding is a point 
operation which can be implemented easily on the 
FPGA. Colour based segmentation requires care to be 
taken in the environmental setup as discussed in the 
next section. A block diagram of the complete system 
is shown below in Figure 1. 

Figure 1: Block diagram of system 

The tracking algorithm is broken into four stages: 
colour conversion, segmentation and region labelling, 
morphological filtering, and object detection. The 
pixel stream from the image capture sub-system is 
converted to a YUV colour space to remove the 
inherent interdependence between luminance and 
chrominance in the RGB colour space. Segmentation 

is performed using colour thresholding to associate 
each pixel with a particular colour class. A 
morphological filter is then used to remove any noise 
pixels that are not part of object regions. Finally, 
objects are detected by constructing a bounding box 
which encloses all of the pixels within a colour class. 
For each object, region parameters such as position, 
size, orientation and other useful information may be 
determined. 

A strict timing constraint is imposed with pixels 
arriving at a rate of 13.5MHz, allowing approximately 
74 ns per pixel to perform all four operations in 
Figure 1 . This inevitably requires applying both 
coarse-grain (between operations in the processing 
chain) and fine-grain pipelining (within operations) to 
ensure meeting of timing constraints. 

2.1 Environment 
Our aim is to work in a relatively unstructured 
environment. An unstructured environment (such as 
no blue/green screen) provides greater system 
flexibility and portability but can make reliable 
segmentation more difficult because of the need to 
distinguish the objects of interest from any other 
objects that may be present within the image. This 
limitation may be overcome by restricting the target 
objects to saturated and distinctive colours to enable 
them to be distinguished from the unstructured 
background. 

Augmenting the unstructured environment with 
structured colour in this way is a compromise that 
enables a much simpler segmentation algorithm to be 
used. In the context of the game, the user is required 
to wear or hold fluorescent (highly saturated and 
intense) colour “markers”. Each marker has a 
different colour to allow the tracking algorithm to 
differentiate between them. Each object to be 
identified and tracked must have a unique uniform 
colour associated with it; this is called its colour class.  

Detecting and segmenting purely by colour introduces 
a number of interacting variables that must be 
correctly adjusted. In addition to aperture adjustment 
of the camera and tuning of the colour thresholds for 
each target object, lighting within the environment 
also plays an important role. The colour of the 
lighting and placement within the environment has a 
dramatic affect on the reliability of the algorithm. 
Lights positioned within the camera field of view can 
introduce noise pixels into the image. Frontal spot 
lighting can cause the pixels of the target objects to 
saturate so that they appear white. Thus diffuse 
lighting is preferred.  

2.2 Image capture 
Image capture is performed using a video camera and 
ADC converter (decoder chip) which digitises the 
analogue signal from the camera into a stream of 16-
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bit RGB (5:6:5) pixels. The stream is interlaced with 
successive fields providing the odd and even lines of 
the PAL frame. 

The algorithm operates on each field of the interlaced 
frame. The effective image size is therefore reduced 
to 768 by 288 pixels. In our implementation the 
decrease in spatial resolution is justified because 
tracked objects are large in relation to the size of the 
frame. Processing each field independently increases 
the temporal sampling frequency to 50 samples per 
second. It also avoids “tearing” resulting from the 
rapid movement of objects between successive fields.   

2.3 Colour space transformation 
The simplest form of colour segmentation is to 
independently threshold the red, green and blue 
components of each pixel. Those pixels that are 
within all three ranges are classified as belonging to 
the corresponding colour class. Unfortunately, such 
segmentation is frequently unreliable because any 
change in the intensity of a colour results in a 
diagonal movement within RGB space, with a 
significant effect on all of the components [7]. To 
allow for this, the colour region has to be quite large 
with the significant likelihood of background pixels 
being misclassified into each colour class. This 
intensity interdependence problem may be overcome 
by transforming the image to another colour space 
such as HSI or YUV. Each of these separates the 
colour components from the intensity or luminance. 
The transformation from RGB to YUV colour space 
consists of a coordinate rotation to map the RGB cube 
onto the Y, U and V axes. Transforming from RGB to 
HSI involves mapping the RGB cube to a cone and is 
computationally more expensive, although it gives 
better intensity independence [8]. 

The YUV colour space is widely used in video and 
broadcasting [9]. The standard RGB to YUV 
transformation matrix involves several floating point 
multiplication operations which are computationally 
expensive for an FPGA implementation: 

0.299 0.587 0.114
0.169 0.331 0.500
0.500 0.419 0.081

Y R
U G
V B

     
     = − −     
     − −     

(1) 

A more efficient alternative is to replace equation (1) 
with the modified YUV colour space transform 
proposed in [7]. This removes the multiplications, 
replacing them with simple addition, subtraction and 
shift operations: 

1 1 1
4 2 4
1 1 1
4 2 4
1 1
2 20

Y R
U G
V B

′     
    ′ = −    
 ′   −    

 (2) 

Note that this transformation is only similar to the 
standard YUV transform in that it separates the 

luminance and chrominance components, and the two 
chrominance components are orthogonal. However in 
this application, we do not need true YUV, so this 
simplification is valid. Although the R, G, and B
components have different precisions, as far as 
equations (1) and (2) are concerned, they can be 
treated as fractions between 0 and 1. Equation (2) will 
give 7 bits of precision for each component. 

As equation (2) is a coordinate rotation, any change to 
the intensity will also affect the values of U ′ and V ′ .
Therefore, to make the U ′ and V ′ less sensitive to 
illumination, we want to normalise them by the 
intensity, Y ′ . This caused problems because for the 
saturated colours chosen for the markers, the value of 
Y ′ can be lower than that of V ′ . This can shift the 
normalised values outside the range -1 to 1. This may 
be avoided by normalising by  

max( , , )Y R G B′′ = (3) 

instead of Y ′ . Y ′′ would have 6 bits precision. 

One consequence of the normalisation is that the 
decreased dependence on light intensity, comes at the 
cost of colour specificity. Normalisation has the 
tendency to detect all colours with similar hue. Thus, 
there is a trade off between intensity insensitivity and 
colour selectivity. 

The FPGA implementation calculates Y ′′ from 
equation (3), and U ′ and V ′ from equation (2) in 
parallel for each pixel in the input stream. This makes 
it possible for the whole conversion to occur in one 
clock cycle. 

2.4 Colour thresholding 
For each colour class, the normalised components are 
independently thresholded using 

minY Y′′ ′′> , min max
UU U
Y
′

′ ′< <
′′

 and min max
VV V
Y
′

′ ′< <
′′

 (4) 

Only a single threshold is required for Y ′′ because the 
target colours are bright. A pixel belongs to a colour 
class only if it is within all three Y ′′ , U ′ , and V ′
ranges, and is labelled with a unique ID 
corresponding to that particular class. As each colour 
class corresponds to an object being tracked, all pixels 
within the image are labelled as part of an object 
region or as part of the background. This reduces the 
raw pixel data to a unique ID that depends on the 
number of tracking objects defined. For N colour 
classes there will be 1N + (to include the background 
label) unique IDs. 

Equation (4) includes a division operation which is 
costly to implement in hardware, using a large amount 
of FPGA resources and introducing long 
combinatorial delays if not pipelined [4]. The division 
can be removed algebraically by multiplying the U ′ ,
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and V ′ components of equation (4) through by Y ′′ to 
give 

min maxY U U Y U′′ ′ ′ ′′ ′< < and min maxY V V Y V′′ ′ ′ ′′ ′< < (5) 

The resulting multiplications are less expensive than 
the divisions. However, as is shown in the next 
section, even these multiplications may be eliminated. 

2.5 Lookup table optimisation 
To perform segmentation and labelling of N colour 
classes, 4N multiplications and 5N comparisons 
must be made on each pixel after performing the 
colour transformation. For real-time operation, each 
colour class must have separate hardware because all 
N sets of comparisons must be performed per clock 
cycle. These operations can therefore consume 
significant resources on the FPGA if performed in 
parallel. 

Due to the proliferation of small dedicated on-chip 
RAM resources on many of today’s FPGAs (Xilinx 
calls this Block RAM), a lookup table (LUT) can be 
used to perform the thresholding, normalisation and 
labelling in a single step. This saves on fabric 
resource utilisation, combinatorial logic delays and 
pipeline latency. 

The LUT method involves pre-calculating the result 
of equation (5) for all valid input values. On 
initialisation, the resulting values are loaded into local 
memory on the FPGA (in Block RAM). All of the 
tests of equations (4) and (5) could be performed in 
one step, requiring 220 entries in the LUT table (6 
address bits for Y ′′ and 7 each for U ′ and V ′ ). 
However, since the U ′ and V ′ thresholds are 
independent, they may be separated, reducing lookup 
to 2 tables of 213 entries each. Each entry would 
produce a single bit result indicating whether or not 
the colour is within the thresholded range.  

Each Block RAM on the target FPGA has 212 bits, 
therefore 4 Block RAMs would be required for each 
colour class. Again this is expensive in terms of 
resources. By reducing the precision of Y ′′ , U ′ and 
V ′ , a compromise can be made between precision 
and resource utilisation. As the RGB inputs only have 
5 or 6 bits precision, reducing the precision of U ′ and 
V ′ to 6 bits is reasonable. The Y ′′ is used primarily 
for normalisation, and some normalisation will take 
place even when relatively low precision is used. 
Therefore the Y ′′ component was reduced to 3 bits. 
The net effect is that the Y U′′ ′ and Y V′′ ′ tables 
requires 29 bits each. 

Multiple colours may be tested simultaneously 
because several tables in parallel would use the same 
address (the actual colour of the pixel being 
classified), but have 1 bit for each colour class being 
tested. This arrangement is illustrated in Figure 2. 

Figure 2: Representation within a LUT element 

In our implementation, we test 4 colours 
simultaneously in this way. Both Y U′′ ′ and Y V′′ ′ for 
4 colours may be combined into a single Block RAM. 
The RAM is dual-ported, allowing both tables to be 
accessed simultaneously. This configuration means 
the first half of the Block RAM stores the Y U′′ ′ table 
and the second half stores Y V′′ ′ . The first bit of the 
index thus specifies the table to be accessed. The next 
3 bits of the index correspond to the Y ′′ value and the 
final 6 bits are either the U ′ or V ′ value of the 
transformed pixel. 

The two 4-bit colour class mask results are bit-wise 
ANDed together. If the result is 0000 the pixel does 
not belong to any of the colour classes and is 
considered as a background pixel. If there is a single 1 
in any bit position, then the position of the 1 
corresponds to the class of the object. The case of 
multiple ones is by definition invalid, because a pixel 
may belong to at most one class. 

The LUT approach to colour classification works with 
any number of colour classes (subject to resource 
limitations), and has a constant processing time of 1 
clock cycle.  

2.6 Object recognition 
A bounding box [9] provides a simple method for 
calculating the position, size and aspect ratio of a 
labelled region. With a little additional processing, the 
bounding box can also be employed to give the 
orientation of a non-symmetric object.  

The bounding box is defined by the topmost, 
bottommost, leftmost and rightmost pixels belonging 
to a particular colour class. The method works by 
recording the co-ordinates of the first pixel of the 
labelled region in a raster scan. This gives the top of 
the box. Then with each successive line the x co-
ordinate of any pixel in the labelled region is 
compared with the recorded co-ordinates of the 
current left ( min ) and right sides ( max ) of the box. 
These are updated if the detected pixel is outside the 
present bounds. Finally the last pixel in the labelled 
region is used to give the y co-ordinate for the bottom 
of the box.  

Each target object and thus colour class has its own 
bounding box. Thus all bounding boxes must be 
calculated in parallel during the processing of the 
field. Separate hardware and a local data structure can 
be built to keep track of each bounding box. However, 
as each pixel is labelled as part of a single colour class 
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(overlapping classes are invalid) only a single 
bounding box is adjusted for each pixel. Therefore, 
the use of duplicated hardware is inefficient as only 
one instance will be used at a time. 

Instead, we can share a single instance of the 
bounding box hardware. This is multiplexed between 
the data structures containing information for each 
bounding box, depending on the colour class. By 
configuring logic cells to act as on-chip memory, an 
array of bounding box structures may be created to 
store the required data, with the multiplexing 
performed implicitly though the address port. As the 
clock frequency of our design is twice that of the 
pixel data rate, the RAM can be single ported. This 
allows a read and comparison of the bounding box 
data with the pixel position on the first clock cycle, 
with the results to be written back to RAM on the 
second clock cycle. 

After scanning through the entire field each bounding 
box will have been successfully constructed. Useful 
information about the bounding box can be extracted 
during the vertical blanking period and be used to 
control any application that can map this information 
to some useful function. For example: 
• The centre of the bounding box will approximate 

the centre and thus position of the target object. A 
simple method for calculating this is to add the top 
and bottom and left and right coordinates, shifting 
each result one bit to the right to divide by two.  

• The size is given by the width and the height 
(difference between the left and right, and the top 
and bottom). From this the distance from the 
camera to the object may be inferred. 

• The aspect ratio is given as the ratio of the width 
to the height. The user can twist the colour 
markers to change the aspect ratio, and this may 
be used in a similar manner to a mouse click. 

• The orientation of an elongated object may be 
determined by augmenting the bounding box. For 
each row within the image, if the leftmost 
boundary is adjusted an accumulator is 
decremented, and if the rightmost boundary is 
adjusted the accumulator is incremented. For a 
rod-like object at an angle, one side will be 
extended more frequently than the other and this is 
reflected in the sign of the accumulator. 

The bounding box method of object recognition is 
sensitive to noise on the boundary pixels which can 
also introduce jitter into the detected position. These 
introduce an uncertainty or noise into the tracking 
parameters. More accurate information can be derived 
by smoothing tracking information over a series of 
fields, at the expense of additional logic resources. 

2.7 Morphological filtering 
After testing the initial algorithm, we found that even 
with adequate tuning there were isolated noise pixels 

associated with each colour class. Any stray pixel will 
cause the box to encompass the noise pixel, leading to 
the erroneous calculation of bounding boxes and 
consequently the derived tracking information. Pixels 
can be labelled incorrectly for several reasons 
including: objects of similar colour to the target in the 
environment, noise introduced by the image capture 
sub-system, specular reflections, and high contrast 
edges [10]. To remove these mislabelled pixels we 
employ a morphological erosion filter with a two by 
two structuring element. 

This filter will remove any pixel labels that are not 
part of a group of pixels in a square four element 
window. This was found to be sufficient to remove 
most of the noise as long as the environment lighting, 
image capture sub-system (including aperture) and 
colour thresholds have been set up appropriately. 
Filtering cannot remove mislabelled pixels as a result 
of an object of similar colour to the target being 
within the captured environment. 

The two by two filter is separable which means that 
filtering can be performed independently using a two 
element window in each of the horizontal and vertical 
directions. Thus the current pixel is first compared 
with the previous pixel (its left neighbour), by using a 
bitwise AND of the colour class masks. If the 
previous pixel belongs to the same class, it will be 
unchanged, but if the class is different, the result will 
be 0. The result is stored into the corresponding 
location in a line buffer. The result is also compared 
with the class label of the pixel from the previous line, 
obtained from the line buffer. This results in the filter 
using the bottom line from the previous frame when 
operating on the top line of the frame and the right 
most pixel from the previous line when operating on 
the left most pixel. 

A single Block RAM is used for the line buffer, 
allowing a maximum line length of 1024 pixels (for a 
4 bit colour class mask). Single-ported RAM is used, 
resulting in a two clock cycle pipeline to perform the 
filtering. In the first cycle the horizontal filter is 
applied, and the value from the previous row is read 
from the line buffer. The second is used to do the 
vertical filtering and write the horizontal filter result 
to the line buffer. The use of the colour class mask 
enables all classes to be filtered in parallel with 
simple bitwise AND operations in constant time.  

In some instances this filter does not remove all noise; 
one way to reduce such noise would be to increase the 
window size of the morphological filter. 
Alternatively, a more complex region labelling sub-
system could be implemented such as one based on 
connected component labelling. However both of 
these would come at the cost of increased on-chip 
memory and logic usage. We found that in most 
situations our system worked satisfactorily after 
careful adjustments to the lighting and adequate 
tuning. 
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3 Results 
The resource utilisation for the tracking algorithm is 
shown below in Table 1. The target device is a 
XC2S200, a low cost and small sized FPGA. The 
resource requirements of each step were estimated by 
removing each part of the algorithm and calculating 
the difference in size that was given by the hardware 
generation tools.  

Table 1: Resource utilisation of target device (Xilinx 
Spartan-II XC2S200) 

 LUT 
RAMs

Logic 
LUT

Flip 
Flops

Block 
RAM 

Video decoder  111 78  
Colour conversion  25 15  
Segmentation and 
region labelling 

 124 147 1 

Morphological filter  5 12 1 
Bounding box 39 76 123  
Calculating position 
and aspect ratio 

 19 10  

Total 39 360 385 2 
Available 4704 4704 14 

The implementation uses approximately 10% of the 
available logic resources of the target device. The 
logic used to implement the segmentation and region 
labelling appears high but thresholding itself accounts 
for only 5 logic LUTs and 4 flip flops with the 
remaining hardware needed to initialise the lookup 
table from off-chip flash memory. 

The FPGA implementation operates at only 27 MHz 
with 90% area left for control applications. This meets 
our aim of a small footprint system, leaving sufficient 
room for applications using the tracking information 
to be implemented.  

4 Summary 
Object identification and tracking frequently requires 
the use of a real-time image processing system. 
Although real-time processing is achievable on serial 
processors, it can be beneficial to take advantage of 
the parallelism, low cost, and low power consumption 
offered by FPGAs. 

To implement a compact design, it is necessary to 
balance algorithm optimisations and their effect on 
the target environment. All such optimisations rely on 
assumptions made about the environment and may 
restrict the operation of the system. 

To reduce resource and logic utilisation the tracking 
algorithm uses several optimisations. The colour 
transformation has been simplified to remove the 
multiplications found in the standard YUV transform. 
The LUT-based segmentation and region labelling 
combine two costly operations into one step, 
eliminating the need for large numbers of parallel 
comparators. We have also made trade-offs in the 
type of algorithm used to implement this system, 
simple colour based segmentation, and the use of a 

bounding box over more complex connected 
component based region labelling. 

The resulting optimised implementation can fit on a 
small and low-end FPGA, such as the Xilinx Spartan-
II XC2S200, with sufficient resources still available 
for an application to make use of the derived tracking 
information. We have demonstrated this by designing 
a simple interactive arcade game where the user’s 
movement of coloured markers are used as an input 
into the game. 
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