
0-7695-2500-8/06 © 2006 IEEE 47

Using Design Patterns to Overcome Image Processing Constraints on FPGAs

K. T. Gribbon, D. G. Bailey, C. T. Johnston
Institute of Information Sciences and Technology

Massey University, Private Bag 11 222,
Palmerston North, New Zealand

k.gribbon@massey.ac.nz, d.g.bailey@massey.ac.nz, c.t.johnston@massey.ac.nz

Abstract

The mapping of image processing algorithms to
hardware is complicated by several hardware
constraints including limited processing time, limited
access to data and limited resources of the system.
These constraints often force the designer to
reformulate the algorithm. To aid in the process this
paper details the application of design patterns to
image processing algorithm development. Design
patterns embody experience and through reuse provide
tools for solving particular mapping problems. The
effectiveness of design patterns for overcoming
constraints in the mapping process is illustrated in the
context of a real world example that focuses on the
development of a real-time object tracking algorithm
implemented on an FPGA.

1. Introduction

Continual advances in the size and functionality of
FPGAs over recent years has resulted in an increasing
interest in their use as implementation platforms for
image processing applications, particularly real-time
video processing [1].

The physical structure of FPGAs allows them to
exploit the parallelism inherent in low-level image
processing operations. This parallelism exists in two
major forms [2]: spatial parallelism, in which the image
is divided into multiple sections and processed
concurrently, and temporal parallelism, where the
algorithm may be represented as a time sequence of
simple concurrent operations. FPGA implementations
have the potential to be parallel using a mixture of
these two forms.

Pragmatically, the degree of parallelization is
subject to the processing mode and hardware
constraints imposed by the system. Based on previous
work [3,4] we believe there are three processing
modes: stream, offline and hybrid processing. We have

also identified the following constraints: timing
(limited processing time), bandwidth (limited access to
data), and resource (limited system resources)
constraints. These constraints are inextricably linked
and manifest themselves in different ways depending
on the processing mode. Managing constraints makes
the mapping of image processing algorithms to
hardware more challenging.

1.1. The mapping process

In this paper, mapping is defined as the process of
taking an image processing algorithm (usually
represented as a serial algorithm as implemented on a
serial computer) and specifying it in some hardware
language which can then be subsequently compiled into
a netlist and implemented on an FPGA.

Traditionally, this has been an involving low-level
process as the designer must manually manage the
constraints. The design is often specified at the register
transfer level (RTL) using a data flow approach to help
maintain better control of the constraints and allow for
flexible optimization [4]. Working at this level draws
heavily on past design experience to address problems
resulting from the imposed constraints and often
requires detailed knowledge of the underlying
hardware. Reusability is performed in a somewhat ad
hoc fashion, consisting of libraries of functions that
remain specific to the target device and system.

In recent years, high-level languages for hardware
have emerged that attempt to address some of the
limitations of the low-level approach by automating
parts of the mapping process. Many of these are based
on popular procedural languages like C [5,6].
Compilers automatically extract parallelism from the
source code using optimization techniques such as loop
unrolling to exploit spatial parallelism and automatic
pipelining to exploit temporal parallelism. Any
speedup over an equivalent implementation on a serial
processor is deemed useful.

0-7695-2500-8/06 © 2006 IEEE 48

This provides a more algorithmic approach to
hardware design and appears to present a solution for
image processing, which already has a large stable code
base of well-defined software algorithms for
implementing many common image processing
operations [7]. Thus a working hardware design can be
produced by porting existing software image
processing libraries. This also makes it easy for image
processing experts who are used to programming in a
software language to make the transition from
algorithmic source code to a gate-level representation
(netlist) by abstracting away from the underlying low-
level hardware issues [8].

The problem with this approach is that high-level
languages for hardware give the illusion of software
programming, which can reinforce the software
‘mindset’. Offen [9] stated that the classical serial
architecture is so central to modern computing that the
architecture-algorithm duality is firmly skewed towards
this type of architecture. If direct mapping of a
software algorithm to hardware is performed, compiler
optimizations will only improve the speed of what is
fundamentally a sequential-based algorithm. The
resulting implementation is functionally correct and in
some cases real-time video processing rates are
achieved or exceeded. However, it does not necessarily
represent the most optimal algorithm to use for certain
processing modes and there is no guarantee that
compiler optimizations will meet the explicit timing
constraints demanded by video rate processing.

This is most apparent when dealing with software
algorithms that access memory in a way which cannot
easily be achieved under stream processing. Chain
coding is an example of such an operation as it requires
random access to memory [10]. The algorithm must be
rewritten without the requirement of random access to
memory using either single or multiple passes through
the image. In these cases development must revert back
to low-level mapping.

1.2. Using design patterns

It is clear that there are shortcomings in the mapping
process for both approaches described above. Low-
level mapping is labor intensive, requires detailed
knowledge, and places little emphasis on design
reusability. In high-level mapping the software
‘mindset’ often results in sub-optimal mappings.

Reflection over previous work [3,4,10] has led to
the identification of common challenges, in the
mapping process under imposed constraints. To
address this, we propose applying the concept of design
patterns, a common design methodology in software

engineering [11] (and originally borrowed from
architectural engineering [12]), to the application
domain of image processing on FPGAs.

The use of generalized solutions in the mapping
process is not a new concept. Benkrid, Crookes et al
[13] discuss hardware skeletons which are defined as a
parameterized description of a task-specific
architecture. However, design patterns differ in that
they are more abstract. Hardware skeletons can be
directly embodied in code, but only examples of
patterns can be embodied in code. Other researchers in
the field of reconfigurable computing advocate the use
of design patterns [14] but we opt for a narrower view
focused on image processing and the constraints that
make the mapping process difficult.

Design patterns, as we envisage applying them,
identify possible techniques for managing the
constraints in different situations and focus on key
elements of the solution which may be reusable in
subsequent mappings.

We believe design patterns address the limitations
of both low and high-level mapping that were outlined
above in the following ways:

• Recorded patterns provide a way to convey

design experience in a structured and
informative manner by capturing the essence of
the solution

• Patterns encourage design reusability as they
represent generalized solutions which can be
reapplied

• Considering a range of patterns for a particular
problem means the choice of pattern(s) can be
made according to the constraints and the
system and application requirements ultimately
leading to more efficient mappings

• The generalized solutions that form the basis of
the methodology provide a suitable abstraction
that can be applied to emerging languages and
hardware in this fast moving area

Section 2 addresses issues of categorization for

design patterns. A list of example patterns with
associated tradeoffs is provided at the end of this paper
(see Table 1). To show how design patterns can aid in
the mapping process section 3 will apply design
patterns in the context of a real-world example. Section
4 closes with a summary of the paper.

2. Example design patterns

In essence, design patterns are generalized solutions
to recurring problems. An important aspect in our

0-7695-2500-8/06 © 2006 IEEE 49

proposal of applying design patterns is taxonomy. As
there are many design patterns (discovered,
documented and undiscovered) and each can vary in its
level of abstraction and purpose, there needs to be a
way to categorize them. Categorizing should be
performed according to the application domain that
design patterns will be applied to. In architectural
engineering Alexander, Ishikawa, et al [12] opted for a
hierarchical categorization, viewing the connection
between patterns as a linear and dependent sequence of
categories from the general (e.g. towns) to the specific
(e.g. rooms). Gamma, Helm et al [11] on the other hand
have opted for classification according to purpose,
which reflects what a pattern does. Thus a pattern can
have creational, structural, or behavioral purpose
depending on what effect the pattern has on the
(programming) object.

Thus, we propose categorizing design patterns
according to the constraints that they address because
in our target application domain of image processing
we are concerned with how to manage the constraints
effectively during the mapping process.

Where possible design patterns should cover a range
of possible solutions so a user can base their choice of
patterns in the context of how the problem is presented
and the imposed constraints. To provide some insight
into the range of design patterns available a categorized
list of example patterns is provided in Table 1. This list
is by no means exhaustive. A brief description and the
trade offs of applying each pattern are provided.

3. Real-world example

One of the best ways to illustrate the effectiveness
of design patterns is to show how they solve particular
problems imposed by the constraints in the context of a
real-world example. Recently completed work on an
FPGA-based remote object tracking algorithm [15] will
serve as a means for conveying these benefits. This
example will ignore some of the details of the image
processing algorithm and the reader is referred to [15]
if these details are of interest. Instead, this section will
focus on the algorithm development and show how
various design patterns were employed in the mapping
process. Alternative design patterns will also be
considered.

3.1. System overview

The tracking algorithm is broken into four stages:
color conversion, segmentation, filtering, and object
location (see Figure 1).

Figure 1. Block diagram of tracking system

The pixel stream from the image capture sub-system
is converted to a modified YUV color space to remove
the inherent interdependence between luminance and
chrominance in RGB color space. Segmentation is
performed using color thresholding to associate each
pixel with a particular color class. A morphological
filter is then used to remove any noise pixels that are
not part of object regions. Finally, objects are detected
by constructing a bounding box which encloses all
pixels within an object region so that position, size,
orientation, and other useful information may be
determined for each object.

3.2. Image capture

The digitized video input stream of 16-bit RGB
pixels (5:6:5) is interlaced with successive fields
providing the odd and even lines of the PAL frame. A
strict timing constraint is imposed with pixels arriving
at a rate of 13.5 MHz, leaving approximately 74 ns per
pixel to perform all four operations in Figure 1. Simply
performing the operations on each pixel in sequence
leads to long combinatorial delays which can easily
exceed the input rate. One option is to imitate serial
systems and clock the design at a much higher
frequency so that multiple sequential operations can be
performed in the time between input pixels. This would
require running at a clock speed several times the input
rate, increasing power consumption.

Our system provides a 27 MHz clock to run the
design, effectively providing one input pixel every two
clock cycles. This inevitably requires applying coarse-
grain (between operations in the processing chain) and
fine-grain pipelining (within operations) patterns to
ensure timing constraints are met.

The FINE-GRAIN PIPELINING pattern accepts an
input pixel value from the stream and outputs a
processed pixel value every clock cycle with several
clock cycles of latency, equal to the number of pipeline
stages, between the input and output. This allows
several pipeline stages each for the evaluation of

0-7695-2500-8/06 © 2006 IEEE 50

complex expressions and functions contained in the
processing chain (see Figure 1).

Here, latency must be traded off against potential
speedup and this is an important consideration as
delayed tracking information could cause instability in
closed-loop control systems. In our implementation we
minimize latency by pipelining as little as possible to
meet timing constraints but in other applications long
pipelines may be acceptable.

High temporal resolution is an important property of
our tracking algorithm because we desire to track fast
moving objects and provide real-time control. Thus we
can apply the INPUT PROCESSING pattern to the
interlaced input stream because each field effectively
provides an independent time sample of the
environment. The tracking algorithm therefore operates
independently on each field of the interlaced frame.
The effective image size is subsequently reduced to
768 by 288 pixels lowering spatial resolution in the
vertical direction but increasing temporal resolution to
a frequency of 50 samples a second. The decrease in
spatial resolution is justified because tracked objects
are large in relation to the size of the frame. It also
avoids “tearing” resulting from the rapid movement of
objects between successive fields.

The DOWNSAMPLING pattern could also be applied if
extra clock cycles are needed to process pixels. For
example, processing could be performed on every
second pixel (downsampling by a factor of two),
effectively providing an extra clock cycle in which to
perform processing at the expense of decreasing spatial
resolution in the horizontal direction .

Applying the INPUT PROCESSING pattern also avoids
potential bandwidth constraints resulting from frame
buffering, as intermediate storage for deinterlacing the
input stream is not required and the process of
extracting tracking information reduces data volume.

Input processing may be ineffective for some
operations such as geometric transforms if the order
that the pixels are required for processing does not
correspond directly to the raster order in which they are
input. In these cases the image must be partly or wholly
buffered. Consequently developers are forced to deal
with resource and bandwidth constraints.

If geometric transforms are to be performed,
processing is shifted to the output end and a suitable
frame buffering pattern such as MULTIPLE RAM BANKS
or MULTI-PORT RAM (see Table 1) can be applied,
depending on the hardware available. Full frame
processing also requires frame buffering to deinterlace
the input video stream. Spatial resolution is increased
in exchange for a reduction in temporal resolution.

3.3. Color space transformation

RGB space is inadequate for color thresholding
because of the interdependence between the luminance
and chrominance components [16]. YUV space
provides a more robust alternative. It was specifically
designed for broadcasting and transmission and also
contains perception-based properties that give more
precision to brightness than colour [17].

The standard RGB to YUV transform is a
coordinate rotation involving several computationally
expensive floating point multiplications to map the
RGB cube onto the Y , U and V axes (see [15] for
details of the transformation matrix).

Direct evaluation of the transformation matrix is
possible but the imposed timing constraint may cause
difficulties that are avoidable if we consider that the
colour space is being interpreted at an intermediate
stage of the processing chain in Figure 1 and will not
be viewed by the human visual system. Thus any
perception-based optimisations can be ignored.

Given these considerations, the APPROXIMATION
pattern can be applied. The traditional YUV transform
can be modified by replacing costly multiplications
with simple addition, subtraction and shift operations
while still retaining the properties of YUV space that
are desirable. The resulting transform is less costly to
implement in terms of resources and combinatorial
delays (see [15]).

3.4. Region labeling

To perform segmentation and labeling for each
object, the colour space components must be
independently thresholded using Equation (1):

minY Y′′ ′′> , min maxY U U Y U′′ ′ ′ ′′ ′< < , min maxY V V Y V′′ ′ ′ ′′ ′< < (1)
which takes into account normalization of U and V to
compensate for varying illumination (see [15]).
According to Equation (1) for N colour classes, 4N
multiplications and 5N comparisons must be made on
each pixel after performing the colour transformation.

For stream processing, each color class must have
separate hardware because all sets of comparisons and
multiplications must be performed per pixel. This can
be time consuming and can consume significant
resources on the FPGA if performed in parallel.

As an alternative, the LOOKUP TABLE pattern can be
used to perform thresholding, normalization and
labeling in a single step on any number of color classes
(subject to resource limitations) and has a constant
processing time of one clock cycle. This saves on logic

0-7695-2500-8/06 © 2006 IEEE 51

cell utilization, combinatorial logic delays, and pipeline
latency.

One of the disadvantages of lookup tables is that the
entries must be pre-calculated. Our implementation
requires external non-volatile memory to store the
contents of the lookup table because they are dynamic
in the sense that the thresholds are not fixed.

3.5. Object detection

One of the simplest forms of extracting information
from an object is to use a bounding box. The bounding
box encloses a labeled region (all pixels within a color
class) from which tracking information can be
extracted. Details of the algorithm are given in [15].

All bounding boxes must be calculated in parallel
during the processing of each field. A naïve
implementation would use separate hardware to keep
track of each bounding box. However, as each pixel is
labeled as part of a single color class (overlapping
regions are invalid) only a single bounding box is
adjusted for each pixel. Therefore, the use of
duplicated hardware is inefficient as only one instance
will be used at a time.

Instead, we can apply the SHARED PROCESSOR
pattern. An aggregate data structure for all bounding
boxes is multiplexed to a single piece of hardware
which calculates the bounding box. Using the SHARED
PROCESSOR pattern, data structures can be built using
logic cells (array of registers), off-chip memory, or on-
chip memory. The advantage of using memory
structures is that multiplexing is implicitly performed
through the address port reducing logic cell utilization.

In our implementation, we configure logic cells to
behave like single-port RAM. This is possible because
the clock frequency of the design is twice the video
input data rate. Thus a single pixel arrives every two
clock cycles and the read-modify-write operations are
split appropriately. Dual-port memory could also be
used although on our target device there is a limited
pool available.

Object tracking using a bounding box requires two
processes to operate on the shared bounding box data
structure. The first incrementally updates the bounds as
pixels arrive. The second extracts tracking information
once the bounding box has been constructed. Resource
conflict can occur between these processes. One
solution is to use two data structures so that the new
bounding box can be constructed while tracking
information can be extracted from the previous
bounding box.

Alternatively the TEMPORARY OFFLINE PROCESSING
pattern can be applied to overcome this resource

conflict. The pattern exploits the property that for
video data there are more clock cycles in a field (or
frame) than there are visible pixels if the input (or
output) stream contains blanking periods. Thus offline
processing can be invoked whilst in the blanking
periods and multiple sequential accesses can be made
as long as processing is completed before the end of
the blanking period.

In our implementation, three processes are used to
calculate the bounding box. The first process executes
during the visible portion of the video input stream to
update the top, right and left bounds of the boxes as
pixels arrive. The second executes during the
horizontal blanking period to update the bottom bound.
The third executes exclusively in the vertical blanking
period where tracking information such as velocity,
position, and size is extracted and the bounds reset.
This removes the need to duplicate data structures.

As timing constraints are imposed the two processes
that operate during the blanking periods must be
scheduled to execute at specific points in time. The
EVENT TRIGGERING pattern from Table 1 can be applied
for this purpose. The processes remain stalled waiting
for a specific event such as the beginning of the
blanking period. When this occurs, execution resumes.

3.6. Filtering

After testing the initial algorithm, it was found that
even with adequate tuning there were isolated noise
pixels associated with each color class. Stray pixels
cause the bounding box to encompass the noise pixel,
leading to erroneous calculation and consequently the
derivation of inaccurate tracking information. To
remove these mislabelled pixels we employ a
morphological erosion filter with a two-by-two
structuring element window.

Filtering imposes memory bandwidth constraints as
we need to populate an entire neighborhood of pixels to
perform the operation.

A number of design patterns are applicable and can
be divided into frame buffering or local buffering
arrangements. The choice of frame buffering pattern
(see Table 1) is highly dependant on the memory
architecture of the system. While each frame buffering
pattern aids in the alleviation of memory bandwidth
constraints by allowing multiple accesses, the
consequences of using any of these patterns must also
be weighed. These are primarily increased system cost
and space requirements.

As an alternative to frame buffering, a design
pattern from the row buffering family can be applied
which leads to the arrangement in Figure 2. Input data

0-7695-2500-8/06 © 2006 IEEE 52

from the previous row is buffered for when the window
is scanned along subsequent lines.

Row buffer

Filter operation

Input
stream

Window

Output
stream

Figure 2. Architecture of row buffering design
pattern family

A suitable row buffering pattern must be chosen.

We apply the PIXEL-ADDRESSED ROW BUFFER pattern
as an external counter driving other processes is
available and it is more efficient to multiplex this than
use a circular memory buffer. A shift register is also
another alternative but does not map well to the
architecture of the target device due to the large pixel
width.

To minimize expected latency and combinatorial
delays in filtering, our implementation also applies the
SEPARABILITY pattern which takes advantage of the
property that for some operations, independent
processing can be performed in the horizontal and
vertical directions. Using this pattern, the two-by-two
window is decomposed into two element windows
operating in both the horizontal and vertical directions.
This simplifies the filter calculations.

4. Summary

FPGAs are often used as implementation platforms
for image processing applications because their
structure can exploit spatial and temporal parallelism.

In high-level mapping the software ‘mindset’ often
results in sub-optimal mappings. Low-level mapping
can overcome the software ‘mindset’ but the approach
requires detailed knowledge and places little emphasis
on reusability.

The example in section 3 has shown that even a
simple algorithm is quickly complicated by stream
processing constraints. Using design patterns facilitates
the mapping process and can help overcome the
imposed constraints.

5. Acknowledgements

The authors would like to acknowledge the Celoxica
University Programme for generously providing the
DK3 Design Suite.

6. References

[1] Hutchings, B. and Villasenor, J., “The Flexibility of

Configurable Computing,” IEEE Signal Processing
Magazine, vol. 15, pp. 67-84, Sep, 1998.

[2] Downton, A. and Crookes, D., “Parallel Architectures for
Image Processing,” IEE Electronics & Communication
Engineering Journal, vol. 10, pp. 139-151, Jun, 1998.

[3] Gribbon, K. T. and Bailey, D. G., “A Novel Approach to
Real-time Bilinear Interpolation,” Second IEEE International
Workshop on Electronic Design, Test and Applications,
Perth, Australia, pp. 126-131, Jan, 2004.

[4] Gribbon, K. T., Johnston, C. T., and Bailey, D. G., “A Real-
time FPGA Implementation of a Lens Distortion Correction
Algorithm with Bilinear Interpolation,” Proc. Image and
Vision Computing New Zealand, Massey University,
Palmerston North, New Zealand, pp. 408-413, Nov, 2003.

[5] Najjar, W. A., Böhm, W., Draper, B. A., Hammes, J., Rinker,
R., Beveridge, J. R., Chawathe, M., and Ross, C., “High-level
language abstraction for reconfigurable computing,” IEEE
Computer, vol. 36, pp. 63-69, Aug, 2003.

[6] Haldar, M., Nayak, A., Choudhary, A., and Banerjee, P., “A
system for synthesizing optimized FPGA hardware from
MATLAB,” Proc. International Conference on Computer-
aided Design, San Jose, California, pp. 314-319, 2001.

[7] Webb, J. A., “Steps toward architecture-independent image
processing,” IEEE Computer, vol. 25, no. 2, pp. 21-31, 1992.

[8] Alston, I. and Madahar, B., “From C to netlists: hardware
engineering for software engineers?” IEE Electronics &
Communication Engineering Journal, pp. 165-173, Aug,
2002.

[9] Offen, R. J. VLSI Image Processing, London: Collins, 1985.
[10] Johnston, C. T., Gribbon, K. T., and Bailey, D. G.,

“Implementing Image Processing Algorithms on FPGAs,”
Proc. Eleventh Electronics New Zealand Conference,
Palmerston North, New Zealand, pp. 118-123, Nov. 2004.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software,
United States of America: Addison-Wesley Publishing
Company, 1995.

[12] Alexander, C., Ishikawa, S., Silverstein, M., Jacobsen, M.,
Fiksdahl-King, I., and Angel, S. A Pattern Language, New
York: Oxford University Press, 1977.

[13] Benkrid, K., Crookes, D., and Benkrid, A., “Towards a
general framework for FPGA based image processing using
hardware skeletons,” Parallel Computing, vol. 28, pp. 1141-
1154, Aug, 2002.

[14] DeHon, A., Adams, J., DeLorimier, M., Kapre, N., Matsuda,
Y., Naeimi, H., Vanier, M., and Wrighton, M., “Design
patterns for reconfigurable computing,” 12th Annual IEEE
Symp. Field-Programmable Custom Computing Machines,
pp. 13-23, 2004.

[15] Johnston, C. J., Gribbon, K. T., and Bailey, D. G., “FPGA-
based Remote Object Tracking for Real-time Control,” To
appear in Proc. First International Conference on Sensing
Technology, Nov, 2005.

[16] Sen Gupta, G. and Bailey, D. G., “A new colour-space for
efficient and robust segmentation,” Proc. Image and Vision
Computing New Zealand, Christchurch, New Zealand, pp.
315-320, Nov, 2004.

[17] Russ, J. C. The Image Processing Handbook, Boca Raton,
Florida: CRC Press, 2002.

0-7695-2500-8/06 © 2006 IEEE 53

Table 1. Examples patterns and classification
Constraint Pattern Family Pattern Name Description Trade offs

Basic LUT Pre-calculate values of a complex expression or
function and store them in a lookup table

+ Constant access time − Pre-calculation required
Lookup table

Interpolated LUT Interpolate between elements of a LUT + Increased accuracy − Extra operations needed

Pipelining Fine-grain pipelining
Break up long combinatorial paths by inserting
registers to store intermediate results

+ Increases design clock speed − Increased latency
− Increased resource use
− Priming required

Temporary offline processing Utilize blanking period of the input/output video
stream to perform offline processing

+ Multiple sequential
operations possible

− Requires input/output streams
with blanking periods

Incremental update Calculate function using previous results and
incrementally update

+ Can directly evaluate
complex functions

− Sequential addressing required
− Must store previous results Computational

architectures
CORDIC Use CORDIC algorithm to calculate

trigonometry functions
+ Does not require any

multiplications
− Iterative algorithm and

multiple sequential calculations

Separability
Process vertical direction and horizontal
direction of image independently

+ Simplifies calculations
+ May remove local buffering

− Intermediate image may
need to be buffered

Approximations Make an approximation to an operation + Helps meet timing constraints − Less accurate results possible

Event-triggered Process waits for the occurrence of some event
before executing

+ Simple triggering − Designer must keep track of
applicable events

Channel Process waits to synchronize or to pass data
over a channel

+ Designer need not keep track
of synchronizations

− May be stalled for long periods
of time

Buffered channel Processes pass data to one another through an
intermediate buffer connecting them

+ Processes on either end of the
buffer do not stall as often

− Buffer requires resources

Timing1

Scheduling

Self-stalling process
Process automatically stalls after execution and
awaits triggering

+ Process can be reused − May not have finished
executing by next trigger
event/sync

Shift register

Shift registers are used as buffering elements in
the window filtering arrangement

+ Simple buffering arrangement − Large shift registers may not
map well to architecture

− Random access not
supported

Circular memory buffer Circular memory buffers are used as buffering
elements in the window filtering arrangement

+ Reduces logic cell utilization as
memory used to store pixel data

− May require dual-port RAM
− Random access not supported

Pixel-addressed buffer
Memory addressed by the x component of the
pixel location is used as buffering elements in the
window filtering arrangement

+ Random access possible − External counters often needed
for addressing

Row buffering

Pre-loading buffer
Decision criteria is used to pre-load row buffer
(usually in blanking period) with pixels for
filtering on next line

+ May help in attaining required
neighborhood pixel values in
‘hard’ cases

− More complex logic required
for buffering

Multiple RAM banks
Add redundant memory in the form of multiple
RAM banks in parallel.

+ Multiple access to pixels − Increases system cost
− Increases space

requirements

Bank switching Write to one RAM bank and read from the
other. Swap at end of frame

+ Provides synchronization − Requires two RAM banks for
essentially one image

Multi-port RAM
Use RAM that supports multiple address and
data ports in order to make multiple read or
write accesses

+ Allows multiple access to pixels
per system clock cycle

− Requires specialized RAM
− Increases system cost

Frame buffering

Fast memory clock
Use faster RAM clock to make multiple
sequential accesses per system clock cycle

+ Allows multiple access to pixels
per system clock cycle

− High speed RAM required.
− Increases system cost
− Synchronization issues

Input processing
Process as much of the input stream as possible + Can remove need to buffer

image
− Not possible if input order

does not match required
processing order

Pack memory
If a memory location is a multiple of pixel width,
multiple pixels can be stored per location

+ Allows multiple pixels to be
retrieved per access

− Suitable only for low color
resolution or gray-scale
pixels

Bandwidth2

Packing

Interleaved memory

Rearrange an image as it is written to RAM such
that when it is read, pixels will be in the desired
order for processing e.g. window filtering
operations

+ Order of pixels read from
memory matches order required
for processing

− Image must be rearranged to
be written into memory

Semaphore
A process raises a flag when accessing shared
data. Competing processes check to see if flag is
raised before accessing shared data

+ Simple to implement with
insignificant additional cost to
resources

− Flag can be raised at the
same time it is checked
leading to conflict

Prioritized access

Shared data access is prioritized among
competing processes. Higher priority processes
pre-empt lower priority processes when
contention occurs

+ Higher priority processes get
immediate access to shared
resources

− Higher-priority processes
may ‘hog’ resource for long
periods of time

Time slot access Competing processes access shared data for
specific amounts of time

+ Access occurs for determinable
amount of time

− Contention can still occur if
time overlaps

Resource
controller

Event-based access Competing processes access shared data based
on the occurrence of some event

+ Simple access method − Contention can still occur if
events coincide

Shared processor A single instance of some function is multiplexed
to multiple data

+ Decrease resource utilization as
hardware is reused

− Can’t access multiple
elements of data structure

Resource3

Downsampling
Decrease spatial resolution in vertical or
horizontal direction or in both

+ Reduces storage requirements
+ Reduces ‘real estate’ if images

displayed

− Processing performed on
lower resolution image

1Timing constraints: The data rate requirements of the
application impose a timing constraint. At video rates all
required processing for each pixel must be performed at the
pixel clock rate (or faster). Processes must be also
scheduled for execution and asynchronous processes may
need to synchronize to exchange data.

2Bandwidth constraints: Images may need to be partially
or wholly buffered to perform certain operations. Off-chip
memory is often used as images represent large data sets
and FPGAs have small and limited amounts of on-chip
memory. This places large amounts of data behind limited
bandwidth and serialized connections.

3Resource constraints: The finite number of available
resources in the system such as function blocks or local and
off-chip RAM imposes a constraint. On an FPGA, there may
be a number of concurrent processes that need access to a
particular resource in a given clock cycle which can result in
contention and/or undefined behavior. ……………………

