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Abstract 
 

The mapping of image processing algorithms to 
hardware is complicated by several hardware 
constraints including limited processing time, limited 
access to data and limited resources of the system. 
These constraints often force the designer to 
reformulate the algorithm. To aid in the process this 
paper details the application of design patterns to 
image processing algorithm development. Design 
patterns embody experience and through reuse provide 
tools for solving particular mapping problems. The 
effectiveness of design patterns for overcoming 
constraints in the mapping process is illustrated in the 
context of a real world example that focuses on the 
development of a real-time object tracking algorithm 
implemented on an FPGA. 
 
1. Introduction 
 

Continual advances in the size and functionality of 
FPGAs over recent years has resulted in an increasing 
interest in their use as implementation platforms for 
image processing applications, particularly real-time 
video processing [1]. 

The physical structure of FPGAs allows them to 
exploit the parallelism inherent in low-level image 
processing operations. This parallelism exists in two 
major forms [2]: spatial parallelism, in which the image 
is divided into multiple sections and processed 
concurrently, and temporal parallelism, where the 
algorithm may be represented as a time sequence of 
simple concurrent operations. FPGA implementations 
have the potential to be parallel using a mixture of 
these two forms. 

Pragmatically, the degree of parallelization is 
subject to the processing mode and hardware 
constraints imposed by the system. Based on previous 
work [3,4] we believe there are three processing 
modes: stream, offline and hybrid processing. We have 

also identified the following constraints: timing 
(limited processing time), bandwidth (limited access to 
data), and resource (limited system resources) 
constraints. These constraints are inextricably linked 
and manifest themselves in different ways depending 
on the processing mode. Managing constraints makes 
the mapping of image processing algorithms to 
hardware more challenging. 
 
1.1. The mapping process 
 

In this paper, mapping is defined as the process of 
taking an image processing algorithm (usually 
represented as a serial algorithm as implemented on a 
serial computer) and specifying it in some hardware 
language which can then be subsequently compiled into 
a netlist and implemented on an FPGA. 

Traditionally, this has been an involving low-level 
process as the designer must manually manage the 
constraints. The design is often specified at the register 
transfer level (RTL) using a data flow approach to help 
maintain better control of the constraints and allow for 
flexible optimization [4]. Working at this level draws 
heavily on past design experience to address problems 
resulting from the imposed constraints and often 
requires detailed knowledge of the underlying 
hardware. Reusability is performed in a somewhat ad 
hoc fashion, consisting of libraries of functions that 
remain specific to the target device and system. 

In recent years, high-level languages for hardware 
have emerged that attempt to address some of the 
limitations of the low-level approach by automating 
parts of the mapping process. Many of these are based 
on popular procedural languages like C [5,6]. 
Compilers automatically extract parallelism from the 
source code using optimization techniques such as loop 
unrolling to exploit spatial parallelism and automatic 
pipelining to exploit temporal parallelism. Any 
speedup over an equivalent implementation on a serial 
processor is deemed useful.  
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This provides a more algorithmic approach to 
hardware design and appears to present a solution for 
image processing, which already has a large stable code 
base of well-defined software algorithms for 
implementing many common image processing 
operations [7]. Thus a working hardware design can be 
produced by porting existing software image 
processing libraries. This also makes it easy for image 
processing experts who are used to programming in a 
software language to make the transition from 
algorithmic source code to a gate-level representation 
(netlist) by abstracting away from the underlying low-
level hardware issues [8]. 

The problem with this approach is that high-level 
languages for hardware give the illusion of software 
programming, which can reinforce the software 
‘mindset’. Offen [9] stated that the classical serial 
architecture is so central to modern computing that the 
architecture-algorithm duality is firmly skewed towards 
this type of architecture. If direct mapping of a 
software algorithm to hardware is performed, compiler 
optimizations will only improve the speed of what is 
fundamentally a sequential-based algorithm. The 
resulting implementation is functionally correct and in 
some cases real-time video processing rates are 
achieved or exceeded. However, it does not necessarily 
represent the most optimal algorithm to use for certain 
processing modes and there is no guarantee that 
compiler optimizations will meet the explicit timing 
constraints demanded by video rate processing.  

This is most apparent when dealing with software 
algorithms that access memory in a way which cannot 
easily be achieved under stream processing. Chain 
coding is an example of such an operation as it requires 
random access to memory [10]. The algorithm must be 
rewritten without the requirement of random access to 
memory using either single or multiple passes through 
the image. In these cases development must revert back 
to low-level mapping. 
 
1.2. Using design patterns 
 

It is clear that there are shortcomings in the mapping 
process for both approaches described above. Low-
level mapping is labor intensive, requires detailed 
knowledge, and places little emphasis on design 
reusability. In high-level mapping the software 
‘mindset’ often results in sub-optimal mappings.  

Reflection over previous work [3,4,10] has led to 
the identification of common challenges, in the 
mapping process under imposed constraints. To 
address this, we propose applying the concept of design 
patterns, a common design methodology in software 

engineering [11] (and originally borrowed from 
architectural engineering [12]), to the application 
domain of image processing on FPGAs. 

The use of generalized solutions in the mapping 
process is not a new concept. Benkrid, Crookes et al 
[13] discuss hardware skeletons which are defined as a 
parameterized description of a task-specific 
architecture. However, design patterns differ in that 
they are more abstract. Hardware skeletons can be 
directly embodied in code, but only examples of 
patterns can be embodied in code. Other researchers in 
the field of reconfigurable computing advocate the use 
of design patterns [14] but we opt for a narrower view 
focused on image processing and the constraints that 
make the mapping process difficult.  

Design patterns, as we envisage applying them, 
identify possible techniques for managing the 
constraints in different situations and focus on key 
elements of the solution which may be reusable in 
subsequent mappings.  

We believe design patterns address the limitations 
of both low and high-level mapping that were outlined 
above in the following ways:  

 
• Recorded patterns provide a way to convey 

design experience in a structured and 
informative manner by capturing the essence of 
the solution 

• Patterns encourage design reusability as they 
represent generalized solutions which can be 
reapplied  

• Considering a range of patterns for a particular 
problem means the choice of pattern(s) can be 
made according to the constraints and the 
system and application requirements ultimately 
leading to more efficient mappings 

• The generalized solutions that form the basis of 
the methodology provide a suitable abstraction 
that can be applied to emerging languages and 
hardware in this fast moving area 

 
Section 2 addresses issues of categorization for 

design patterns. A list of example patterns with 
associated tradeoffs is provided at the end of this paper 
(see Table 1). To show how design patterns can aid in 
the mapping process section 3 will apply design 
patterns in the context of a real-world example. Section 
4 closes with a summary of the paper. 
 
2. Example design patterns 
 

In essence, design patterns are generalized solutions 
to recurring problems. An important aspect in our 
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proposal of applying design patterns is taxonomy. As 
there are many design patterns (discovered, 
documented and undiscovered) and each can vary in its 
level of abstraction and purpose, there needs to be a 
way to categorize them. Categorizing should be 
performed according to the application domain that 
design patterns will be applied to. In architectural 
engineering Alexander, Ishikawa, et al [12] opted for a 
hierarchical categorization, viewing the connection 
between patterns as a linear and dependent sequence of 
categories from the general (e.g. towns) to the specific 
(e.g. rooms). Gamma, Helm et al [11] on the other hand 
have opted for classification according to purpose, 
which reflects what a pattern does. Thus a pattern can 
have creational, structural, or behavioral purpose 
depending on what effect the pattern has on the 
(programming) object. 

Thus, we propose categorizing design patterns 
according to the constraints that they address because 
in our target application domain of image processing 
we are concerned with how to manage the constraints 
effectively during the mapping process.  

Where possible design patterns should cover a range 
of possible solutions so a user can base their choice of 
patterns in the context of how the problem is presented 
and the imposed constraints. To provide some insight 
into the range of design patterns available a categorized 
list of example patterns is provided in Table 1. This list 
is by no means exhaustive. A brief description and the 
trade offs of applying each pattern are provided.  
 
3. Real-world example 
 

One of the best ways to illustrate the effectiveness 
of design patterns is to show how they solve particular 
problems imposed by the constraints in the context of a 
real-world example. Recently completed work on an 
FPGA-based remote object tracking algorithm [15] will 
serve as a means for conveying these benefits. This 
example will ignore some of the details of the image 
processing algorithm and the reader is referred to [15] 
if these details are of interest. Instead, this section will 
focus on the algorithm development and show how 
various design patterns were employed in the mapping 
process. Alternative design patterns will also be 
considered. 
 
3.1. System overview 
 

The tracking algorithm is broken into four stages: 
color conversion, segmentation, filtering, and object 
location (see Figure 1). 

Figure 1. Block diagram of tracking system 
 

The pixel stream from the image capture sub-system 
is converted to a modified YUV color space to remove 
the inherent interdependence between luminance and 
chrominance in RGB color space. Segmentation is 
performed using color thresholding to associate each 
pixel with a particular color class. A morphological 
filter is then used to remove any noise pixels that are 
not part of object regions. Finally, objects are detected 
by constructing a bounding box which encloses all 
pixels within an object region so that position, size, 
orientation, and other useful information may be 
determined for each object. 
 
3.2. Image capture 
 

The digitized video input stream of 16-bit RGB 
pixels (5:6:5) is interlaced with successive fields 
providing the odd and even lines of the PAL frame. A 
strict timing constraint is imposed with pixels arriving 
at a rate of 13.5 MHz, leaving approximately 74 ns per 
pixel to perform all four operations in Figure 1. Simply 
performing the operations on each pixel in sequence 
leads to long combinatorial delays which can easily 
exceed the input rate. One option is to imitate serial 
systems and clock the design at a much higher 
frequency so that multiple sequential operations can be 
performed in the time between input pixels. This would 
require running at a clock speed several times the input 
rate, increasing power consumption. 

Our system provides a 27 MHz clock to run the 
design, effectively providing one input pixel every two 
clock cycles. This inevitably requires applying coarse-
grain (between operations in the processing chain) and 
fine-grain pipelining (within operations) patterns to 
ensure timing constraints are met. 

The FINE-GRAIN PIPELINING pattern accepts an 
input pixel value from the stream and outputs a 
processed pixel value every clock cycle with several 
clock cycles of latency, equal to the number of pipeline 
stages, between the input and output. This allows 
several pipeline stages each for the evaluation of 
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complex expressions and functions contained in the 
processing chain (see Figure 1). 

Here, latency must be traded off against potential 
speedup and this is an important consideration as 
delayed tracking information could cause instability in 
closed-loop control systems. In our implementation we 
minimize latency by pipelining as little as possible to 
meet timing constraints but in other applications long 
pipelines may be acceptable. 

High temporal resolution is an important property of 
our tracking algorithm because we desire to track fast 
moving objects and provide real-time control. Thus we 
can apply the INPUT PROCESSING pattern to the 
interlaced input stream because each field effectively 
provides an independent time sample of the 
environment. The tracking algorithm therefore operates 
independently on each field of the interlaced frame. 
The effective image size is subsequently reduced to 
768 by 288 pixels lowering spatial resolution in the 
vertical direction but increasing temporal resolution to 
a frequency of 50 samples a second. The decrease in 
spatial resolution is justified because tracked objects 
are large in relation to the size of the frame. It also 
avoids “tearing” resulting from the rapid movement of 
objects between successive fields. 

The DOWNSAMPLING pattern could also be applied if 
extra clock cycles are needed to process pixels. For 
example, processing could be performed on every 
second pixel (downsampling by a factor of two), 
effectively providing an extra clock cycle in which to 
perform processing at the expense of decreasing spatial 
resolution in the horizontal direction . 

Applying the INPUT PROCESSING pattern also avoids 
potential bandwidth constraints resulting from frame 
buffering, as intermediate storage for deinterlacing the 
input stream is not required and the process of 
extracting tracking information reduces data volume. 

Input processing may be ineffective for some 
operations such as geometric transforms if the order 
that the pixels are required for processing does not 
correspond directly to the raster order in which they are 
input. In these cases the image must be partly or wholly 
buffered. Consequently developers are forced to deal 
with resource and bandwidth constraints. 

If geometric transforms are to be performed, 
processing is shifted to the output end and a suitable 
frame buffering pattern such as MULTIPLE RAM BANKS 
or MULTI-PORT RAM (see Table 1) can be applied, 
depending on the hardware available. Full frame 
processing also requires frame buffering to deinterlace 
the input video stream. Spatial resolution is increased 
in exchange for a reduction in temporal resolution. 
 

3.3. Color space transformation 
 

RGB space is inadequate for color thresholding 
because of the interdependence between the luminance 
and chrominance components [16]. YUV space 
provides a more robust alternative. It was specifically 
designed for broadcasting and transmission and also 
contains perception-based properties that give more 
precision to brightness than colour [17]. 

The standard RGB to YUV transform is a 
coordinate rotation involving several computationally 
expensive floating point multiplications to map the 
RGB cube onto the Y , U and V axes (see [15] for 
details of the transformation matrix).  

Direct evaluation of the transformation matrix is 
possible but the imposed timing constraint may cause 
difficulties that are avoidable if we consider that the 
colour space is being interpreted at an intermediate 
stage of the processing chain in Figure 1 and will not 
be viewed by the human visual system. Thus any 
perception-based optimisations can be ignored. 

Given these considerations, the APPROXIMATION 
pattern can be applied. The traditional YUV transform 
can be modified by replacing costly multiplications 
with simple addition, subtraction and shift operations 
while still retaining the properties of YUV space that 
are desirable. The resulting transform is less costly to 
implement in terms of resources and combinatorial 
delays (see [15]). 
 
3.4. Region labeling 
 

To perform segmentation and labeling for each 
object, the colour space components must be 
independently thresholded using Equation (1): 

minY Y′′ ′′> , min maxY U U Y U′′ ′ ′ ′′ ′< < , min maxY V V Y V′′ ′ ′ ′′ ′< < (1) 
which takes into account normalization of U and V to 
compensate for varying illumination (see [15]). 
According to Equation (1) for N colour classes, 4N
multiplications and 5N comparisons must be made on 
each pixel after performing the colour transformation. 

For stream processing, each color class must have 
separate hardware because all sets of comparisons and 
multiplications must be performed per pixel. This can 
be time consuming and can consume significant 
resources on the FPGA if performed in parallel. 

As an alternative, the LOOKUP TABLE pattern can be 
used to perform thresholding, normalization and 
labeling in a single step on any number of color classes 
(subject to resource limitations) and has a constant 
processing time of one clock cycle. This saves on logic 
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cell utilization, combinatorial logic delays, and pipeline 
latency.  

One of the disadvantages of lookup tables is that the 
entries must be pre-calculated. Our implementation 
requires external non-volatile memory to store the 
contents of the lookup table because they are dynamic 
in the sense that the thresholds are not fixed. 
 
3.5. Object detection 
 

One of the simplest forms of extracting information 
from an object is to use a bounding box. The bounding 
box encloses a labeled region (all pixels within a color 
class) from which tracking information can be 
extracted. Details of the algorithm are given in [15]. 

All bounding boxes must be calculated in parallel 
during the processing of each field. A naïve 
implementation would use separate hardware to keep 
track of each bounding box. However, as each pixel is 
labeled as part of a single color class (overlapping 
regions are invalid) only a single bounding box is 
adjusted for each pixel. Therefore, the use of 
duplicated hardware is inefficient as only one instance 
will be used at a time. 

Instead, we can apply the SHARED PROCESSOR 
pattern. An aggregate data structure for all bounding 
boxes is multiplexed to a single piece of hardware 
which calculates the bounding box. Using the SHARED 
PROCESSOR pattern, data structures can be built using 
logic cells (array of registers), off-chip memory, or on-
chip memory. The advantage of using memory 
structures is that multiplexing is implicitly performed 
through the address port reducing logic cell utilization. 

In our implementation, we configure logic cells to 
behave like single-port RAM. This is possible because 
the clock frequency of the design is twice the video 
input data rate. Thus a single pixel arrives every two 
clock cycles and the read-modify-write operations are 
split appropriately. Dual-port memory could also be 
used although on our target device there is a limited 
pool available. 

Object tracking using a bounding box requires two 
processes to operate on the shared bounding box data 
structure. The first incrementally updates the bounds as 
pixels arrive. The second extracts tracking information 
once the bounding box has been constructed. Resource 
conflict can occur between these processes. One 
solution is to use two data structures so that the new 
bounding box can be constructed while tracking 
information can be extracted from the previous 
bounding box. 

Alternatively the TEMPORARY OFFLINE PROCESSING 
pattern can be applied to overcome this resource 

conflict. The pattern exploits the property that for 
video data there are more clock cycles in a field (or 
frame) than there are visible pixels if the input (or 
output) stream contains blanking periods. Thus offline 
processing can be invoked whilst in the blanking 
periods and multiple sequential accesses can be made 
as long as processing is completed before the end of 
the blanking period. 

In our implementation, three processes are used to 
calculate the bounding box. The first process executes 
during the visible portion of the video input stream to 
update the top, right and left bounds of the boxes as 
pixels arrive. The second executes during the 
horizontal blanking period to update the bottom bound. 
The third executes exclusively in the vertical blanking 
period where tracking information such as velocity, 
position, and size is extracted and the bounds reset. 
This removes the need to duplicate data structures. 

As timing constraints are imposed the two processes 
that operate during the blanking periods must be 
scheduled to execute at specific points in time. The 
EVENT TRIGGERING pattern from Table 1 can be applied 
for this purpose. The processes remain stalled waiting 
for a specific event such as the beginning of the 
blanking period. When this occurs, execution resumes. 
 
3.6. Filtering 
 

After testing the initial algorithm, it was found that 
even with adequate tuning there were isolated noise 
pixels associated with each color class. Stray pixels 
cause the bounding box to encompass the noise pixel, 
leading to erroneous calculation and consequently the 
derivation of inaccurate tracking information. To 
remove these mislabelled pixels we employ a 
morphological erosion filter with a two-by-two 
structuring element window. 

Filtering imposes memory bandwidth constraints as 
we need to populate an entire neighborhood of pixels to 
perform the operation.  

A number of design patterns are applicable and can 
be divided into frame buffering or local buffering 
arrangements. The choice of frame buffering pattern 
(see Table 1) is highly dependant on the memory 
architecture of the system. While each frame buffering 
pattern aids in the alleviation of memory bandwidth 
constraints by allowing multiple accesses, the 
consequences of using any of these patterns must also 
be weighed. These are primarily increased system cost 
and space requirements. 

As an alternative to frame buffering, a design 
pattern from the row buffering family can be applied 
which leads to the arrangement in Figure 2. Input data 
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from the previous row is buffered for when the window 
is scanned along subsequent lines. 

Row buffer

Filter operation

Input
stream

Window

Output
stream

Figure 2. Architecture of row buffering design 
pattern family 

 
A suitable row buffering pattern must be chosen. 

We apply the PIXEL-ADDRESSED ROW BUFFER pattern 
as an external counter driving other processes is 
available and it is more efficient to multiplex this than 
use a circular memory buffer. A shift register is also 
another alternative but does not map well to the 
architecture of the target device due to the large pixel 
width. 

To minimize expected latency and combinatorial 
delays in filtering, our implementation also applies the 
SEPARABILITY pattern which takes advantage of the 
property that for some operations, independent 
processing can be performed in the horizontal and 
vertical directions. Using this pattern, the two-by-two 
window is decomposed into two element windows 
operating in both the horizontal and vertical directions. 
This simplifies the filter calculations. 
 
4. Summary 
 

FPGAs are often used as implementation platforms 
for image processing applications because their 
structure can exploit spatial and temporal parallelism.  

In high-level mapping the software ‘mindset’ often 
results in sub-optimal mappings. Low-level mapping 
can overcome the software ‘mindset’ but the approach 
requires detailed knowledge and places little emphasis 
on reusability. 

The example in section 3 has shown that even a 
simple algorithm is quickly complicated by stream 
processing constraints. Using design patterns facilitates 
the mapping process and can help overcome the 
imposed constraints.  
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Table 1. Examples patterns and classification 
Constraint Pattern Family Pattern Name Description Trade offs 

Basic LUT  Pre-calculate values of a complex expression  or 
function and store them in a lookup table  

+ Constant access time − Pre-calculation required 
Lookup table 

Interpolated LUT Interpolate between elements of a LUT  + Increased accuracy − Extra operations needed 

Pipelining Fine-grain pipelining 
Break up long combinatorial paths by inserting 
registers to store intermediate results 

+ Increases design clock speed − Increased latency 
− Increased resource use 
− Priming required 

Temporary offline processing Utilize blanking period of the input/output video 
stream to perform offline processing 

+ Multiple sequential 
operations possible 

− Requires input/output streams 
with blanking periods 

Incremental update Calculate function using previous results and 
incrementally update 

+ Can directly evaluate 
complex functions  

− Sequential addressing required
− Must store previous results Computational 

architectures 
CORDIC Use CORDIC algorithm to calculate 

trigonometry functions 
+ Does not require any 

multiplications 
− Iterative algorithm and 

multiple sequential calculations 

Separability 
Process vertical direction and horizontal 
direction of image independently 

+ Simplifies calculations  
+ May remove local buffering 

− Intermediate image may 
need to be buffered  

Approximations Make an approximation to an operation + Helps meet timing constraints − Less accurate results possible

Event-triggered Process waits for the occurrence of some event 
before executing 

+ Simple triggering − Designer must keep track of 
applicable events 

Channel Process waits to synchronize or to pass data 
over a channel 

+ Designer need not keep track 
of synchronizations 

− May be stalled for long periods 
of time 

Buffered channel Processes pass data to one another through an 
intermediate buffer connecting them 

+ Processes on either end of the 
buffer do not stall as often 

− Buffer requires resources 

Timing1

Scheduling 

Self-stalling process 
Process automatically stalls after execution and 
awaits triggering 

+ Process can be reused − May not have finished 
executing by next trigger 
event/sync 

Shift register 

Shift registers are used as buffering elements in 
the window filtering arrangement  

+ Simple buffering arrangement − Large shift registers may not 
map well to architecture 

− Random access not 
supported 

Circular memory buffer Circular memory buffers are used as buffering 
elements in the window filtering arrangement  

+ Reduces logic cell utilization as 
memory used to store pixel data 

− May require dual-port RAM 
− Random access not supported

Pixel-addressed buffer 
Memory addressed by the x component of the 
pixel location is used as buffering elements in the 
window filtering arrangement  

+ Random access possible − External counters often needed 
for addressing 

Row buffering 

Pre-loading buffer 
Decision criteria is used to pre-load row buffer 
(usually in blanking period) with pixels for 
filtering on next line 

+ May help in attaining required 
neighborhood pixel values in 
‘hard’ cases 

− More complex logic required 
for buffering 

Multiple  RAM banks 
Add redundant memory in the form of multiple 
RAM banks in parallel.  

+ Multiple access to pixels − Increases system cost 
− Increases space 

requirements 

Bank switching Write to one RAM bank and read from the 
other. Swap at end of frame 

+ Provides synchronization − Requires two RAM banks for 
essentially one image 

Multi-port RAM 
Use RAM that supports multiple address and 
data ports in order to make multiple read or 
write accesses 

+ Allows multiple access to pixels 
per system clock cycle 

− Requires specialized RAM 
− Increases system cost 

Frame buffering 

Fast memory clock 
Use faster RAM clock to make multiple 
sequential accesses per system clock cycle 

+ Allows multiple access to pixels 
per system clock cycle 

− High speed RAM required. 
− Increases system cost 
− Synchronization issues 

Input processing 
Process as much of the input stream as possible + Can remove need to buffer 

image 
− Not possible if input order 

does not match required 
processing order 

Pack memory 
If a memory location is a multiple of pixel width, 
multiple pixels can be stored per location 

+ Allows multiple pixels to be 
retrieved per access 

− Suitable only for low color 
resolution or gray-scale 
pixels 

Bandwidth2

Packing 

Interleaved memory 

Rearrange an image as it is written to RAM such 
that when it is read, pixels will be in the desired 
order for processing e.g. window filtering 
operations 

+ Order of pixels read from 
memory matches order required 
for processing 

− Image must be rearranged to 
be written into memory 

Semaphore 
A process raises a flag when accessing shared 
data. Competing processes check to see if flag is 
raised before accessing shared data 

+ Simple to implement with 
insignificant additional cost to 
resources  

− Flag can be raised at the 
same time it is checked 
leading to conflict 

Prioritized access 

Shared data access is prioritized among 
competing processes. Higher priority processes 
pre-empt lower priority processes when 
contention occurs  

+ Higher priority processes get 
immediate access to shared 
resources 

− Higher-priority processes 
may ‘hog’ resource for long 
periods of time 

Time slot access Competing processes access shared data for 
specific amounts of time 

+ Access occurs for determinable 
amount of time 

− Contention can still occur if 
time overlaps 

Resource 
controller 

Event-based access Competing processes access shared data based 
on the occurrence of some event 

+ Simple access method − Contention can still occur if 
events coincide 

Shared processor A single instance of some function is multiplexed 
to multiple data 

+ Decrease resource utilization as 
hardware is reused 

− Can’t access multiple 
elements of data structure 

Resource3

Downsampling 
Decrease spatial resolution in vertical or 
horizontal direction or in both 

+ Reduces storage requirements 
+ Reduces ‘real estate’ if images 

displayed 

− Processing performed on 
lower resolution image 

1Timing constraints: The data rate requirements of the 
application impose a timing constraint. At video rates all 
required processing for each pixel must be performed at the 
pixel clock rate (or faster). Processes must be also 
scheduled for execution and asynchronous processes may 
need to synchronize to exchange data. 

 
2Bandwidth constraints: Images may need to be partially 
or wholly buffered to perform certain operations. Off-chip 
memory is often used as images represent large data sets 
and FPGAs have small and limited amounts of on-chip 
memory. This places large amounts of data behind limited 
bandwidth and serialized connections. 

 
3Resource constraints: The finite number of available 
resources in the system such as function blocks or local and 
off-chip RAM imposes a constraint. On an FPGA, there may 
be a number of concurrent processes that need access to a 
particular resource in a given clock cycle which can result in 
contention and/or undefined behavior. ……………………

 


