
Optimised Single Pass Connected Components Analysis

Ni Ma
Department of ECSE

Monash University, Clayton, Australia
email: ni.ma@eng.monash.edu.au

Donald G. Bailey, Christopher T. Johnston
School of Engineering and Advanced Technology

Massey University, Palmerston North, New Zealand
D.G.Bailey@massey.ac.nz, c.t.johnston@massey.ac.nz

Abstract

Classical connected components labelling
algorithms are unsuitable for real-time processing of
streamed images on an FPGA because they require
two passes through the image. Recently, a single-pass
algorithm was proposed that avoided the need to buffer
an intermediate image. In this paper, a new single pass
algorithm is described that is a considerable
improvement over the existing algorithms. The new
algorithm reassigns and reuses labels each row to
minimise the size of both the equivalence and region
data tables. The optimised single-pass algorithm
reduces the worst case memory requirement by over
100 times that of the original algorithm (for measuring
region area), and reduces the latency to only 1 row.

1. Introduction

Connected components analysis is an important step
in many image analysis and machine vision
applications. There are typically four stages to such
algorithms as shown in Figure 1. First the input (colour
or greyscale) image is preprocessed through filtering
and thresholding to segment the objects from the
background. The preprocessed image is usually binary,
consisting of a number of regions against a
background. Next, connected components labelling is
used to assign each region a unique label, enabling the
individual objects to be distinguished. In the third
stage, each region is processed (based on its label) to
extract a set of features of the object represented by the
region (for example: area, centre of gravity, bounding
box, average colour or pixel value etc). In the final
stage, these features are used to classify each region
into one of two or more classes.

When implementing such an algorithm for real-time
processing on an FPGA (Field Programmable Gate
Array) the image data is streamed from the camera in a
raster format. The preprocessing operations (typically
filters and point operations) are ideally suited for
stream-based processing without image buffering
(apart from row caching for local filters), making their
FPGA implementation straightforward. Unfortunately,
the classical labelling algorithm [1] requires two passes

through the image, requiring buffering of the
intermediate image. Such buffering also introduces
significant latency into the labelling algorithm.

Figure 1. Pipelined dataflow of connected
components analysis

1.1. Classic connected components labelling

The classic connected components algorithm [1]
requires two raster-scan passes through the image. In
the first pass, a temporary label is assigned to each
object pixel in the image. For each object pixel, the 4
neighbours (assuming 8-connectivity) that have already
been processed are examined (see Figure 2). If none of
the neighbours are labelled, the current pixel is
assigned a new label. If one of the neighbours is
already labelled, that label is propagated to the current
pixel. Whenever two or more labels are encountered in
the neighbourhood, if the labels are all the same then
that label is propagated as before.

A B C

D ?

Figure 2. A label is assigned to the current
pixel based on already processed neighbours

However, at the bottom of a “U” shaped object,
each branch of the “U” will have a different label.
Where they join at the bottom, the two branches will
merge into a single object, and there will be two
different labels within the neighbourhood. These two
labels are now equivalent, in that they refer to the same
region. In this case, one of the two labels will continue
to be used, and all instances of the other label need to
be replaced with the label that was retained. Since
many such mergers may occur in processing an image,

978-1-4244-2796-3/08/$25.00 © 2008 IEEE FPT 2008185

it is more efficient to defer the relabelling process so
that all the merged labels may be changed at once. All
pairs of labels corresponding to merged objects must
be recorded and later resolved to determine the sets of
equivalent labels corresponding to single objects.

The equivalence sets may be considered as a graph,
with nodes representing the temporary labels and links
representing equivalences between pairs of labels.
After the first pass, all of the label equivalences are
resolved. This is equivalent to finding each connected
component within the equivalence graph, and assigning
a new, final, label to each group of equivalent labels. In
the second pass through the image the initial temporary
labels are replaced by their final label.

There are many variations on how the equivalent
labels are represented, and how the equivalence sets
determined [2-6]. An efficient method for recording
equivalences is to use a single 1D array indexed by the
temporary label [5,6]. The array is initialised with the
index as the content. An equivalence resulting from a
merger is then represented by changing the entry for
the larger label to point to the smaller.

1.2. Parallel and FPGA Implementations

While several high-speed parallel algorithms exist
for connected components labelling (see for example
the review in [7]), such algorithms are very resource
intensive, requiring massively parallel processors. This
makes them less suitable for FPGA-based
implementation because the assumption is that the
processors have been pre-loaded with the image data.
When processing streamed images, the bandwidth
bottleneck of reading in the image data destroys most
of the benefits gained by massive parallelism.

Crookes, Benkrid, et al. [8,9] have implemented a
resource efficient multi-pass algorithm on an FPGA.
This uses very simple local processing, but requires an
indeterminate number of passes to completely label the
image. This makes such an algorithm unsuitable for
real-time processing. The iterative nature of the
algorithm also requires a buffer to hold the
intermediate image between passes.

Jablonski and Gorgon [10] have implemented the
classic two-pass connected component labelling on an
FPGA. In doing so, they were able to take advantages
of the parallelism offered by FPGA-based processing
to gain considerable processing efficiencies over a
standard serial algorithm. However, their two-pass
algorithm still requires the image to be buffered for the
second pass, and requires two clock cycles per pixel
plus a small overhead for region merging.

1.3. Single Pass Algorithms

To achieve single pass operation, it is necessary to
avoid the need for producing a labelled image. With

“U” shaped objects, it is impossible to produce a
consistently labelled image without knowing that two
objects will later merge. There are two approaches to
this: to look ahead to determine whether regions will
merge, or to gather the region data as the image is
processed during the first pass.

The look ahead approach is taken by Chang et al
[11]. When an unlabelled object pixel is encountered,
the object boundary is traced, assigning the label to the
complete object boundary. As the raster scanning
continues, the boundary label is then used to fill within
the boundary with the correct, unique, label. This
approach is unsuited to stream processing because the
boundary tracing operation is random access, and may
potentially require the entire image to be available.

The boundary coding approach can be implemented
using a stream based raster scan, without necessarily
looking ahead [12,13]. Such methods effectively build
the boundary in sections, and combine the sections
where regions merge. The boundaries can then be
processed to extract the required features. While this
method is amenable to processing streamed images, it
is limited to obtaining shape information only, as the
pixel values within the regions are no longer available.
The intermediate storage for the region boundaries will
generally require less memory than for the image.
However, in the worst case, the storage needed for the
boundary is the same as for the image.

The only other alternative is to extract the features
of interest for each component or region while
performing the connected components analysis [6].
This avoids the need for passing through the final
labelled image to extract the region data, and therefore
avoids the need for the second relabelling pass. Bailey
and Johnston [14,15] have taken this approach for their
FPGA implementation and have showed that the
maximum processing time is 1.2 clock cycles per pixel.
Their implementation effectively trades the storage
needed for the frame buffer for the storage required for
the data table. This may give significant resource
savings for simple features (such as region area).
However to handle the worst case images, the size of
the table is still proportional to the image area. If it is
necessary to handle the worst case, then much of the
reduction in memory footprint is lost.

1.4. Paper Outline

This paper extends the approach taken by Bailey
and Johnston [14,15] and optimises it to further reduce
the memory requirements and latency.

The next section presents the design requirements
for an efficient FPGA implementation. Section 3
identifies the weak point in the previous single-pass
algorithm, and details our new approach to overcome
this limitation. Section 4 demonstrates the operation of

186

the new algorithm with a worked example. Section 5
compares the expected memory requirements of the
new algorithm with both the previous algorithm and
the classic two-pass algorithm. It also summarises the
results of our FPGA implementation.

2. Design Requirements

For efficient implementation on an FPGA, it is
desirable to minimise the resources used by an
algorithm. From an image processing perspective, an
important resource is the memory required to buffer
any intermediate image and other data. While modern
FPGAs are available with sufficient memory to hold a
whole frame of image data, such devices are at the
high-end of the market and are still relatively
expensive. To minimise the memory requirements, it is
therefore desirable to perform all of the processing on
the image data as it is streamed into the FPGA.

This naturally leads to a pipelined implementation
of the whole image processing algorithm, where
separate processing modules are built for each
operation within the chain (Figure 1). Synchronous
processing of pixel-based data at the input data rate
will simplify the synchronisation between the first 3
modules. Obviously the classification stage will run at
a different rate because it will be operating on feature
data extracted from the regions.

For real-time processing, it is also desirable to
reduce the latency between data input and
classification results output for two reasons. Firstly, a
lower latency will tend to reduce the storage or
memory requirements. Secondly, when the output is
used to control an activity (for example the position of
a robot or manipulator) the closed loop control is easier
to design when the delays are smaller.

3. New single pass Algorithm

The biggest problem with the previous single pass
algorithm [14] is that the worst case memory
requirements are dependent on the area of the image.
The number of entries in both the merger table and the
accumulated data table both depend on the number of
labels needed within the image. If the accumulated data
requires many fields (for example when determining
the moments of the region shapes), then the actual
memory requirements may be worse than the classic
two pass algorithm.

However, we can make the observation that the
maximum number of regions on any one row of the
image is half the width of the image. If the size of the
working data structures can be reduced to this size,
then considerable memory savings can be achieved
[3,4]. Since the merger table and data table are indexed
by region label, this requires that the labels be limited

to this range as well. This can only be accomplished by
recycling the labels from one row to the next. Since a
labelled image is not required, the labels on each row
can be allocated almost independently of the labels on
previous rows as long as the labels are consistent with
the connectivity as determined to that point.

Therefore, assuming that the labelling is consistent
for the previous row, it is only necessary to process the
objects sufficiently to obtain a consistent labelling at
the end of the current row. As each pixel is only visited
once, it is necessary to have data structures to record
merging of regions on the current row. Since the
simplest label allocation scheme is to allocate labels
sequentially, starting from 1 on each new row, it will
also be necessary to translate the labels assigned on the
previous row to those used on the current row.

3.1. Hardware Architecture

Although the new algorithm is quite different, the
hardware architecture is similar to that used by Bailey
and Johnston [14,15]. It is extended by the addition of
the translation table as shown in Figure 3.

Figure 3. Connected components analysis
architecture

The neighbourhood context block provides the
labels of the four previously processed pixels
connected to the current pixel. It is implemented in
much the same manner as a window filter, with the
neighbouring pixel labels stored in registers A, B, C,
and D. These are shifted along each clock cycle as the
window is scanned across the image. As registers A, B,
and C are from the previous row, it is necessary to
record both the old label (as assigned on the previous
row) and equivalent label for the current row. Both
labels are necessary to correctly assign a label to the
current pixel.

Since the resultant labels are not saved in a
temporary image, to obtain the labels from the previous
row for the neighbourhood context they must be
cached using a row buffer. The merger table resolves
any equivalences as a result of mergers on the previous
row, and the translation table translates a label
allocated on the previous row to the new label assigned
to that object on the current row.

187

3.2. Label Selection and Merger Control

The label selection block selects the label for the
current pixel based on the labels of its neighbours. The
label selection is based on the decision tree given in
Figure 4. When a region is encountered on a row for
the first time, a new label is assigned to it. All previous
row labels that appear in the neighbourhood are
updated with the new label. This translation is recorded
in the translation table so that if that label is
encountered elsewhere on the previous row, it is
correctly translated to the label used on this row. If
there are two different previous row labels within the
neighbourhood (for example at the bottom of a “U”
shaped region) then this merger is reflected in the state
of the translation table. It does not need to be stored in
the merger table because the data is already consistent
on the current row. As one current row label represents
two previous row labels after the merger, this saves the
one other label which can be reused for another region
later in the row.

Figure 4. Label selection decision tree. A, B,
and C are the labels assigned on the previous
row, while A” to D” are the equivalent labels

for the current row

However, if there are two different current row
labels within the neighbourhood, these labels are
equivalent and must be recorded in the merger table. In
this case, the decision tree selects the smallest label
without use of comparators. This can be proved as
follows. For a merger to occur, position B must be a
background pixel, and mergers only need to be
considered between the neighbour pairs of D”-C” and
A”-C” [2]. Consider the D”-C” pair, (points � and �
in Figure 5). For C” to exist, the connected region must
have a section which has already been processed in the
current row. Therefore if D” is different, it must have
been assigned after the label for C”, and therefore be
larger. C”, as the smaller of the pair, is assigned to the
current pixel. The same argument holds for the A”-C”
pair (point � in Figure 5). This ensures the smallest
possible label is used for the current label.

If all mergers are to be resolved as they are
encountered, then the merger of 5 to 2 at � must be
propagated to label 6. Furthermore, if label 2 is
subsequently merged to another label further down the
row then all three mergers would need to be updated.
This chaining effect becomes worse as more
connections are established, and must be avoided for
real-time applications. Recognizing the fact that the
merger table is not required until processing the next
row, the label mergers are stored on a stack for
processing at the end of the row, as in [14,15]. There,
each pair of equivalent labels is popped off the stack in
the reverse order along the row. Since the smaller label
is always on the right, one pass of the stack resolves all
mergers for the current row.

1 2 3 3 5 5 2
1 2 3 4 3 5 6 5 2

1 2 3
Figure 5. Example of a series of label mergers.

Translated labels of the previous row pixels
are represented by italics

Since the labels are replaced each row, two merger
tables are required: one to resolve mergers on the
previous row (with previous row labels), and one to
record mergers for the current row. At the end of each
row, the tables are swapped, with the table of new
equivalences on the current row becoming the merger
resolution table for the previous row, and the previous
table being reset to record new mergers.

However, only a single translation table is required.
It is built as the row is scanned, and at the end of the
row all previous row labels will have been translated to
the current row so the table may be reset. Such
resetting may be performed on the fly, while building
the translation table during the next row.

3.3. Data Tables

The data table accumulates the raw data from the
image required for calculating the features of each
connected component. Since the image data is not
retained, feature data must be accumulated for each
connected component as the image is scanned. Any
features that may be accumulated incrementally may
be measured, for example: area, moments, bounding
box, average colour or pixel value. Additional logic
maybe required for certain features, such as edge
detection for measuring perimeter. Otherwise the only
difference for different features is the width of the data
table. The data table is indexed by the current pixel
label, with the corresponding entry updated to reflect
the inclusion of the current pixel within the region.

188

Whenever two regions merge, the corresponding
entries in the data table are also merged [6].

As different labels are used for the previous row and
current row, two data tables are required. Features are
combined when regions connect, with the resulting
combined features stored in the entry indexed by the
current pixel label. Merged or relabelled entries are
deleted from the previous row to simplify detection of
completed objects; any entries not deleted will be
completed regions.

This has the additional advantage that once a region
is completed the features may be passed immediately
to the classification processor without having to wait
until the end of the image scan. This further reduces
the latency with the results of each region being output
at the end of the first row after the last pixel for the
region is input.

4. Algorithm demonstration

The operation of the algorithm is demonstrated by
processing of one row in an image, and is shown in
Figure 7. For each object pixel, the steps for label
selection and table manipulations are presented in a
table. Changes to the tables have been highlighted.

The assigned labels for the last two rows are shown.
The current row for processing is the last row of the
image, and the row above is to be referred to as the
previous row. Two tables are required at the start of
processing the current row: the merge table for
previous row labels (PM) and the data table for
previous row regions (PD).

In considering the image at the end of the previous
row, there are four separate regions: two single pixel
regions with labels 1 and 2, one external arc with label
3, and an inner arc with labels 4 and 5. Labels
belonging to a region have the same equivalent label
unique to the region, which is the smallest label of that
region. The equivalent label can be obtained from the
merger table (PM) using the initially assigned label as
the index. In this example, entries 4 and 5 have the
same value 4; this indicates that pixels with initial
labels 4 and 5 belong to region 4. In the data tables,
existing entries are represented by “#”s. The data of
label 5 has been merged with that of label 4 as part of
the merger processing of the previous row.
Consequently, the 5th entry in the data table for the
previous row (PD) is 0.

The following tables are assumed to be initialised
before the processing of a row: the data table for
current row regions (CD); the translation table (T) for
translating previous row labels into current row labels;
the merger table for the current row labels (CM). In
practise, these tables may be initialised as the current
row is processed.

In the example shown in Figure 7, only the
processing for the object pixels is shown. To aid
understanding, the processing is described separately
for each pixel. In practise, the steps take several clock
cycles, and are pipelined. In the label selection section,
the initial labels from the row buffer are looked up in
the PM to obtain the equivalent label. These are then
translated by looking up in T. The current labels within
the neighbourhood context are highlighted with the
heavy border. These are used to assign the initial label
for the current row.

Pixel position 1 demonstrates a merger of two
previous row regions. A new label is given to the
current pixel, the data of the regions are merged (over
3 clock cycles) and the translation table updated. Pixel
position 2 is a simple label translation, with the data
from the previous row transferred to the new label.
Pixel positions 3 and � have no neighbours so far, so
new labels are given, and data recorded. Note that the
cached data (DC) for 3 is not actually written to the
data table because it is updated on the next clock cycle
at �. Two current row labels merge at pixel positions
� and �. The data are combined, and the label pairs
are pushed on a stack for creating the merger table at
the end of the row. Each time a new label is assigned,
the corresponding entry in the current row merger table
(CM) is initialised.

It is interesting to observe the label mergers from
the “U” shapes, shown by points � and � in Figure 7.
Only labels at � need to be resolved. The “U” at �
does not have a current label for previous label 3, so
the merger is handled solely by the translation table.
This significantly reduces the need for label resolution
over the algorithm of [14,15].

At the end of the row, the stack is processed to
update CM. As each pair of labels is popped off the
stack, the CM entry of the larger label is replaced by
the CM entry of the smaller label. One pass of the
stack is sufficient to process all label merges.

Features of complete regions are also extracted at
the end of the row. The first entry in PD is still “#” at
the end of processing the current row. This indicates
that the region labelled 1 does not extend to the current
row. The completed regions can be easily detected by
reading off all non-zero entries as the PD is initialised
for the next row. This differs from [14,15] which
occurs at the end of frame.

5. Comparison of Methods

The most significant resource required by the
algorithm are the RAMs used for the row buffer,
merger tables, translation tables and data tables.

The row buffer requires a dual-port RAM, with one
port used for writing the value at the input to the
buffer, and the other for reading at the output. The

189

length of the RAM is dictated by the width of the
image, and the width determined by the number of
labels required.

There must be one entry in each of the merger and
data tables for each label used. The number of labels
needed depends strongly on the size and complexity of
the image being analysed, with the worst case being ¼
of the number of pixels in the image. The width of the
merger table is determined by the number of labels,
whereas the width of the data table depends on the
complexity of the features being extracted.

The size of the stack for resolving equivalence
chains depends on the complexity of the image being
analysed. The worst case is reduced from half the
width of the image for the previous algorithm [14] to ¼
the width of the image for the new algorithm (see Fig.
6). Each equivalence pair requires 3 clock cycles to
resolve, although with a dual-port merger table this can
be pipelined with a throughput of 1 equivalence pair
per clock cycle [14].

X X X X
Figure 6. A worst case senario for stack size.

Entries to the stack are noted by “X”

5.1. Memory Requirements

In this section the memory requirements of
connected components labelling (or analysis for the
single pass algorithms) are compared. It is assumed
that a VGA resolution image (640x480 pixels) is being
processed, obtaining the area of each region in the
image. The area is one of the simplest features to
extract, making the hardware easier to debug and test.
Two scenarios will be compared: one will consider the
worst case, and will correctly process any 640x480
image; the other will consider the requirements to
process an image with 1000-1500 regions (with up to
4096 labels). The latter case will not correctly handle
every possible image but will be adequate for most
typical images.

In the worst case (Table 1), a 640x480 image uses
76,800 labels, requiring 17 bits for each label. For the
typical case (Table 2), 4096 labels requires 12 bits for
each label. The area requires up to 19 bits for each
region.

For the classic connected components labelling
algorithm, the whole image must be buffered between
passes, and this is where most of the memory is
required. A data table and chain stack are not required,
but the merger table is required for storing the
equivalence sets. Reducing the number of labels has a
small effect on the image buffer (from the reduced bit
width), but has a significant effect on size of the
equivalence table.

For the original single-pass algorithm of [14,15],
there are significant savings because only one row
needs to be buffered rather than the whole image. The
merger table is the same size as for the classic
algorithm. The data table is the same length as the
merger table, but is 19 bits wide. This is where most of
the memory is required, and this will be made worse
with more complex region data extracted. In the worst
case, there is only a small improvement over the
classic algorithm, but with a reduced number of labels
the storage can be reduced significantly. The chain
stack must be 320 deep in the worst case, but can be
significantly reduced for typical images (16 allowed
here). For typical images, the original single-pass
algorithm requires significantly less memory than the
classic algorithm.

Table 1. Worst case memory (bits)
Classic

two pass
Original

single pass
Optimised
single pass

Row buffer 5,222,400 10,880 5,760
Merger table 1,305,600 1,305,600 5,760

Data table 1,459,200 12,160
Chain stack 10,880 2,880

Total 6,528,000 2,786,560 26,560

Table 2. Typical memory (bits) for 4096 labels
Classic

two pass
Original

single pass
Optimised
single pass

Row buffer 3.686,400 7,680 4,480
Merger table 49,152 49,152 1,792

Data table 77,824 4.864
Chain stack 384 224

Total 3,735,552 135,040 11,360

The number of labels required by the optimised
algorithm is only ½ the width of the image. This
significantly reduces the size of both the merger and
data tables. For a typical image, 128 labels have been
allocated (per row), reducing the storage required for
the merger and data tables further. Overall, label reuse
has greatly improved the memory requirement for the
single pass algorithm.

5.2. Implementation Requirements

The algorithm was developed using Handel-C with
the Celoxica DK5 Design Suite. The implementation
was targeted for a Celoxica RC300 evaluation board
which contains a Xilinx Virtex-II XC2V6000 FPGA.

The algorithm was implemented for the worst case,
processing of a 640x480 image, measuring the area of
each region. No external RAM was used. See Table 3
for details. Note that this also includes a small amount
of logic for generating test data and producing a VGA
output for verifying correct functionality.

190

With the low logic cost of the design, the rest of the
FPGA can be used to extract additional features,
implement the object classification stage and other
processes. The system operates at the at the input data
rate; at this frequency, it is sufficient for processing of
VGA resolution video streams at over 100 frames per
second.

Table 3. Resources used
Block RAMS 4 of 144 2.8%
Slice flip flops 600 67584 0.9%

Logic 958
Route through 403
32x1 RAM 384
Shift registers 12

LUTs

Total 1757 67584 2.6%
Maximum clock frequency 40.63 MHz

6. Conclusion

The classic two-pass connected components
algorithm is not well suited for processing streamed
images because it requires buffering of the
intermediate image between passes. A previous single-
pass algorithm removed the buffering requirement, and
enables the whole algorithm to be implemented as a
single streamed pipeline. That algorithm, however, still
required significant storage for gathering the feature
data in the worst case, although this can be reduced
significantly for typical images.

A new, optimised, algorithm is proposed which
significantly reduces the storage requirement by
recycling labels between rows. The worst case storage
requirements are no longer proportional to the area of
the image, but to the image width. This enables even
worst case images to be processed by a relatively
modest sized FPGA. This is demonstrated by an
implementation that only uses a small fraction of the
resources available on an FPGA, allowing the
remaining resourced to be used for other processing
within the application.

A side effect of recycling the labels is that it enables
completed regions to be detected at the end of the row
following the region. This further improves the latency
of algorithm over the original single-pass algorithm.

The approach we have taken in implementing
connected components analysis is to adapt and remap
an algorithm onto an FPGA rather than use the FPGA
to provide acceleration of an existing algorithm. This
enables the resources available on the FPGA to be used
more effectively, and also allows a significantly
improved implementation. In this instance, it has led to
an improved algorithm that significantly reduces the
memory needed, by over 100 times, and reduces the
latency from the end of the frame after the object is
completed to only one row after the object is complete.

The optimised algorithm is suitable, not only for FPGA
implementation, but for any embedded processor with
limited resources.

7. Acknowledgements

The authors would like to gratefully acknowledge
the Celoxica University Programme for generously
providing the DK Handel-C Design Suite, and the
Xilinx University Programme for providing the ISE
Foundation.

8. References

[1] A. Rosenfeld and J. Pfaltz, "Sequential Operations in
Digital Picture Processing", Journal of the ACM, 13:(4)
471-494 (1966).

[2] K. Wu, E. Otoo, and A. Shoshani, "Optimizing
connected component labelling algorithms", in Medical
Imaging 2005: Image Processing, SPIE 5747: 1965-
1976 (12-17 February, 2005).

[3] V. Khanna, P. Gupta, and C.J. Hwang, "Finding
connected components in digital images by aggressive
reuse of labels", Image and Vision Computing, 20:(8)
557-568 (2002).

[4] R. Lumia, L. Shapiro, and O. Zuniga, "A new
connected components algorithm for virtual memory
computers", Computer Vision, Graphics, and Image
Processing, 22: 287-300 (1983).

[5] L. He, Y. Chao, and K. Suzuki, "A Linear-Time Two-
Scan Labelling Algorithm", in IEEE International
Conference on Image Processing (ICIP 2007), San
Antonio, Texas, V: 241-244 (16-19 September, 2007).

[6] D.G. Bailey, "Raster Based Region Growing", in
Proceedings of the 6th New Zealand Image Processing
Workshop, Lower Hutt, New Zealand, 21-26 (29-30
August, 1991).

[7] H.M. Alnuweiti and V.K. Prasanna, "Parallel
architectures and algorithms for image component
labeling", IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14:(10) 1014-1034 (1992).

[8] K. Benkrid, D. Crookes, and A. Benkrid, "Towards a
general framework for FPGA based image processing
using hardware skeletons", Parallel Computing, 28:
1141-1154 (2002).

[9] D. Crookes and K. Benkrid, "An FPGA Implementation
of Image Component Labelling", in Reconfigurable
Technology: FPGAs for Computing and Applications,
SPIE 3844: 17-23 (August, 1999).

[10] M. Jablonski and M. Gorgon, "Handel-C
Implementation of Classical Component Labelling
Algorithm", in 2004 Euromicro Symposium on Digital
System Design (DSD 2004) Rennes, France, 387-393
(31 August - 3 September, 2004).

[11] F. Chang, C.-J. Chen, and C.-J. Lu, "A linear-time
component-labeling algorithm using contour tracing
technique", Computer Vision and Image
Understanding, 93: 206-220 (2004).

[12] E. Mandler and M.F. Oberlander, "One-pass encoding
of connected components in multivalued images", in
Proceedings of the 10th International Conference on

191

Pattern Recognition, Atlantic City, NJ, 2: 64-69 (16-21
June, 1990).

[13] P. Zingaretti, M. Gasparroni, and L. Vecci, "Fast chain
coding of region boundaries", IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20:(4) 407-
415 (1998).

[14] D.G. Bailey and C.T. Johnston, "Single Pass Connected
Components Analysis", in Image and Vision

Computing New Zealand, Hamilton, New Zealand,
282-287 (5-7 December, 2007).

[15] C.T. Johnston and D.G. Bailey, "FPGA implementation
of a Single Pass Connected Components Algorithm", in
IEEE International Symposium on Electronic Design,
Test and Applications (DELTA 2008), Hong Kong,
228-231 (23-25 January, 2008).

Binary input image; last row is current row of processing

1 2 3 4 5 4 4 3
1 2 3 2 4 1

Tables at start of row
CD 0 0 0 0 0
PD # # # # 0
T 0 0 0 0 0
CM 0 0 0 0 0
PM 1 2 3 4 4

Label Selection Table manipulation
� Row buffer 2 0 3

After merger table 2 0 3
After translation 0 0 0

0

New
label

1

DC = CP ⊕ PD[2]
PD[2] = 0
T[2] = 1
CM[1] = 1

DC = DC ⊕ PD[3]
PD[3] = 0
T[3] = 1

CD[1] = DC

CD # 0 0 0 0
PD # 0 0 # 0
T 0 1 1 0 0
CM 1 0 0 0 0

� Row buffer 0 4 0
After merger table 0 4 0
After translation 0 0 0

0

New
label

2

DC = CP ⊕ PD[4]
PD[4] = 0
T[4] = 2
CM[2] = 2

CD[2] = DC CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 0 0 0

� Row buffer 0 0 0
After merger table 0 0 0
After translation 0 0 0

0

New
label

3

DC = CP

CM[3] = 3

CD[3] = DC CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 0 0

� Row buffer 0 0 5
After merger table 0 0 4
After translation 0 0 2

3

Min
label

2

DC = DC ⊕ CP ⊕ CD[2]
CD[3] = 0

Stack (3,2)

CD[2] = DC CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 0 0

� Row buffer 0 0 0
After merger table 0 0 0
After translation 0 0 0

0

New
label

4

DC = CP

CM[4] = 4

CD[4] = DC CD # # 0 # 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 4 0

� Row buffer 4 0 3
After merger table 4 0 3
After translation 2 0 1

0

Min
label

1

DC = CP ⊕ CD[2]
CD[2] = 0

Stack (2,1)

DC = DC ⊕ CD[1] CD[1] = DC

CD # 0 0 # 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 4 0

At end of the row, the stack is processed update current row merger table:
Stack

(2,1)
(3,2)

CM[2] = CM[1]
CM[3] = CM[2]

CM 1 2 3 4 0
1 1 3 4 0
1 1 1 4 0

Figure 7. Processing of a single row: In the label selection, the current neighbourhood context is
shown with heavy border. Abbreviations: CD – current row data table; DC – data cache; PD –

previous row data table; T – translation table; CM – current row merger table; PM – previous row
merger table; ⊕ – data combination operation; # – valid region data. Note that the table

manipulations are pipelined over up to 3 clock cycles

192

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
