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Abstract 

Classical connected components labelling 
algorithms are unsuitable for real-time processing of 
streamed images on an FPGA because they require 
two passes through the image. Recently, a single-pass 
algorithm was proposed that avoided the need to buffer 
an intermediate image. In this paper, a new single pass 
algorithm is described that is a considerable 
improvement over the existing algorithms. The new 
algorithm reassigns and reuses labels each row to 
minimise the size of both the equivalence and region 
data tables. The optimised single-pass algorithm 
reduces the worst case memory requirement by over 
100 times that of the original algorithm (for measuring 
region area), and reduces the latency to only 1 row. 

1. Introduction 

Connected components analysis is an important step 
in many image analysis and machine vision 
applications. There are typically four stages to such 
algorithms as shown in Figure 1. First the input (colour 
or greyscale) image is preprocessed through filtering 
and thresholding to segment the objects from the 
background. The preprocessed image is usually binary, 
consisting of a number of regions against a 
background. Next, connected components labelling is 
used to assign each region a unique label, enabling the 
individual objects to be distinguished. In the third 
stage, each region is processed (based on its label) to 
extract a set of features of the object represented by the 
region (for example: area, centre of gravity, bounding 
box, average colour or pixel value etc). In the final 
stage, these features are used to classify each region 
into one of two or more classes. 

When implementing such an algorithm for real-time 
processing on an FPGA (Field Programmable Gate 
Array) the image data is streamed from the camera in a 
raster format. The preprocessing operations (typically 
filters and point operations) are ideally suited for 
stream-based processing without image buffering 
(apart from row caching for local filters), making their 
FPGA implementation straightforward. Unfortunately, 
the classical labelling algorithm [1] requires two passes 

through the image, requiring buffering of the 
intermediate image. Such buffering also introduces 
significant latency into the labelling algorithm. 

Figure 1. Pipelined dataflow of connected 
components analysis 

1.1. Classic connected components labelling 

The classic connected components algorithm [1] 
requires two raster-scan passes through the image. In 
the first pass, a temporary label is assigned to each 
object pixel in the image. For each object pixel, the 4 
neighbours (assuming 8-connectivity) that have already 
been processed are examined (see Figure 2). If none of 
the neighbours are labelled, the current pixel is 
assigned a new label. If one of the neighbours is 
already labelled, that label is propagated to the current 
pixel. Whenever two or more labels are encountered in 
the neighbourhood, if the labels are all the same then 
that label is propagated as before.  

 

A B C

D ?

Figure 2. A label is assigned to the current 
pixel based on already processed neighbours 

However, at the bottom of a “U” shaped object, 
each branch of the “U” will have a different label. 
Where they join at the bottom, the two branches will 
merge into a single object, and there will be two 
different labels within the neighbourhood. These two 
labels are now equivalent, in that they refer to the same 
region. In this case, one of the two labels will continue 
to be used, and all instances of the other label need to 
be replaced with the label that was retained. Since 
many such mergers may occur in processing an image, 

978-1-4244-2796-3/08/$25.00 © 2008 IEEE FPT 2008185



it is more efficient to defer the relabelling process so 
that all the merged labels may be changed at once. All 
pairs of labels corresponding to merged objects must 
be recorded and later resolved to determine the sets of 
equivalent labels corresponding to single objects. 

The equivalence sets may be considered as a graph, 
with nodes representing the temporary labels and links 
representing equivalences between pairs of labels. 
After the first pass, all of the label equivalences are 
resolved. This is equivalent to finding each connected 
component within the equivalence graph, and assigning 
a new, final, label to each group of equivalent labels. In 
the second pass through the image the initial temporary 
labels are replaced by their final label. 

There are many variations on how the equivalent 
labels are represented, and how the equivalence sets 
determined [2-6]. An efficient method for recording 
equivalences is to use a single 1D array indexed by the 
temporary label [5,6]. The array is initialised with the 
index as the content. An equivalence resulting from a 
merger is then represented by changing the entry for 
the larger label to point to the smaller. 

1.2. Parallel and FPGA Implementations 

While several high-speed parallel algorithms exist 
for connected components labelling (see for example 
the review in [7]), such algorithms are very resource 
intensive, requiring massively parallel processors. This 
makes them less suitable for FPGA-based 
implementation because the assumption is that the 
processors have been pre-loaded with the image data. 
When processing streamed images, the bandwidth 
bottleneck of reading in the image data destroys most 
of the benefits gained by massive parallelism. 

Crookes, Benkrid, et al. [8,9] have implemented a 
resource efficient multi-pass algorithm on an FPGA. 
This uses very simple local processing, but requires an 
indeterminate number of passes to completely label the 
image. This makes such an algorithm unsuitable for 
real-time processing. The iterative nature of the 
algorithm also requires a buffer to hold the 
intermediate image between passes. 

Jablonski and Gorgon [10] have implemented the 
classic two-pass connected component labelling on an 
FPGA. In doing so, they were able to take advantages 
of the parallelism offered by FPGA-based processing 
to gain considerable processing efficiencies over a 
standard serial algorithm. However, their two-pass 
algorithm still requires the image to be buffered for the 
second pass, and requires two clock cycles per pixel 
plus a small overhead for region merging. 

1.3. Single Pass Algorithms 

To achieve single pass operation, it is necessary to 
avoid the need for producing a labelled image. With 

“U” shaped objects, it is impossible to produce a 
consistently labelled image without knowing that two 
objects will later merge. There are two approaches to 
this: to look ahead to determine whether regions will 
merge, or to gather the region data as the image is 
processed during the first pass. 

The look ahead approach is taken by Chang et al 
[11]. When an unlabelled object pixel is encountered, 
the object boundary is traced, assigning the label to the 
complete object boundary. As the raster scanning 
continues, the boundary label is then used to fill within 
the boundary with the correct, unique, label. This 
approach is unsuited to stream processing because the 
boundary tracing operation is random access, and may 
potentially require the entire image to be available. 

The boundary coding approach can be implemented 
using a stream based raster scan, without necessarily 
looking ahead [12,13]. Such methods effectively build 
the boundary in sections, and combine the sections 
where regions merge. The boundaries can then be 
processed to extract the required features. While this 
method is amenable to processing streamed images, it 
is limited to obtaining shape information only, as the 
pixel values within the regions are no longer available. 
The intermediate storage for the region boundaries will 
generally require less memory than for the image. 
However, in the worst case, the storage needed for the 
boundary is the same as for the image. 

The only other alternative is to extract the features 
of interest for each component or region while 
performing the connected components analysis [6]. 
This avoids the need for passing through the final 
labelled image to extract the region data, and therefore 
avoids the need for the second relabelling pass. Bailey 
and Johnston [14,15] have taken this approach for their 
FPGA implementation and have showed that the 
maximum processing time is 1.2 clock cycles per pixel. 
Their implementation effectively trades the storage 
needed for the frame buffer for the storage required for 
the data table. This may give significant resource 
savings for simple features (such as region area). 
However to handle the worst case images, the size of 
the table is still proportional to the image area. If it is 
necessary to handle the worst case, then much of the 
reduction in memory footprint is lost. 

1.4. Paper Outline 

This paper extends the approach taken by Bailey 
and Johnston [14,15] and optimises it to further reduce 
the memory requirements and latency. 

The next section presents the design requirements 
for an efficient FPGA implementation. Section 3 
identifies the weak point in the previous single-pass 
algorithm, and details our new approach to overcome 
this limitation. Section 4 demonstrates the operation of 
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the new algorithm with a worked example. Section 5 
compares the expected memory requirements of the 
new algorithm with both the previous algorithm and 
the classic two-pass algorithm. It also summarises the 
results of our FPGA implementation. 

2. Design Requirements 

For efficient implementation on an FPGA, it is 
desirable to minimise the resources used by an 
algorithm. From an image processing perspective, an 
important resource is the memory required to buffer 
any intermediate image and other data. While modern 
FPGAs are available with sufficient memory to hold a 
whole frame of image data, such devices are at the 
high-end of the market and are still relatively 
expensive. To minimise the memory requirements, it is 
therefore desirable to perform all of the processing on 
the image data as it is streamed into the FPGA. 

This naturally leads to a pipelined implementation 
of the whole image processing algorithm, where 
separate processing modules are built for each 
operation within the chain (Figure 1). Synchronous 
processing of pixel-based data at the input data rate 
will simplify the synchronisation between the first 3 
modules. Obviously the classification stage will run at 
a different rate because it will be operating on feature 
data extracted from the regions. 

For real-time processing, it is also desirable to 
reduce the latency between data input and 
classification results output for two reasons. Firstly, a 
lower latency will tend to reduce the storage or 
memory requirements. Secondly, when the output is 
used to control an activity (for example the position of 
a robot or manipulator) the closed loop control is easier 
to design when the delays are smaller. 

3. New single pass Algorithm 

The biggest problem with the previous single pass 
algorithm [14] is that the worst case memory 
requirements are dependent on the area of the image. 
The number of entries in both the merger table and the 
accumulated data table both depend on the number of 
labels needed within the image. If the accumulated data 
requires many fields (for example when determining 
the moments of the region shapes), then the actual 
memory requirements may be worse than the classic 
two pass algorithm. 

However, we can make the observation that the 
maximum number of regions on any one row of the 
image is half the width of the image. If the size of the 
working data structures can be reduced to this size, 
then considerable memory savings can be achieved 
[3,4]. Since the merger table and data table are indexed 
by region label, this requires that the labels be limited 

to this range as well. This can only be accomplished by 
recycling the labels from one row to the next. Since a 
labelled image is not required, the labels on each row 
can be allocated almost independently of the labels on 
previous rows as long as the labels are consistent with 
the connectivity as determined to that point. 

Therefore, assuming that the labelling is consistent 
for the previous row, it is only necessary to process the 
objects sufficiently to obtain a consistent labelling at 
the end of the current row. As each pixel is only visited 
once, it is necessary to have data structures to record 
merging of regions on the current row. Since the 
simplest label allocation scheme is to allocate labels 
sequentially, starting from 1 on each new row, it will 
also be necessary to translate the labels assigned on the 
previous row to those used on the current row. 

3.1. Hardware Architecture 

Although the new algorithm is quite different, the 
hardware architecture is similar to that used by Bailey 
and Johnston [14,15]. It is extended by the addition of 
the translation table as shown in Figure 3. 

Figure 3. Connected components analysis 
architecture 

The neighbourhood context block provides the 
labels of the four previously processed pixels 
connected to the current pixel. It is implemented in 
much the same manner as a window filter, with the 
neighbouring pixel labels stored in registers A, B, C, 
and D. These are shifted along each clock cycle as the 
window is scanned across the image. As registers A, B, 
and C are from the previous row, it is necessary to 
record both the old label (as assigned on the previous 
row) and equivalent label for the current row. Both 
labels are necessary to correctly assign a label to the 
current pixel. 

Since the resultant labels are not saved in a 
temporary image, to obtain the labels from the previous 
row for the neighbourhood context they must be 
cached using a row buffer. The merger table resolves 
any equivalences as a result of mergers on the previous 
row, and the translation table translates a label 
allocated on the previous row to the new label assigned 
to that object on the current row. 
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3.2. Label Selection and Merger Control 

The label selection block selects the label for the 
current pixel based on the labels of its neighbours. The 
label selection is based on the decision tree given in 
Figure 4. When a region is encountered on a row for 
the first time, a new label is assigned to it. All previous 
row labels that appear in the neighbourhood are 
updated with the new label. This translation is recorded 
in the translation table so that if that label is 
encountered elsewhere on the previous row, it is 
correctly translated to the label used on this row. If 
there are two different previous row labels within the 
neighbourhood (for example at the bottom of a “U” 
shaped region) then this merger is reflected in the state 
of the translation table. It does not need to be stored in 
the merger table because the data is already consistent 
on the current row. As one current row label represents 
two previous row labels after the merger, this saves the 
one other label which can be reused for another region 
later in the row. 

Figure 4. Label selection decision tree. A, B, 
and C are the labels assigned on the previous 
row, while A” to D” are the equivalent labels 

for the current row 

However, if there are two different current row 
labels within the neighbourhood, these labels are 
equivalent and must be recorded in the merger table. In 
this case, the decision tree selects the smallest label 
without use of comparators. This can be proved as 
follows. For a merger to occur, position B must be a 
background pixel, and mergers only need to be 
considered between the neighbour pairs of D”-C” and 
A”-C” [2]. Consider the D”-C” pair, (points � and �
in Figure 5). For C” to exist, the connected region must 
have a section which has already been processed in the 
current row. Therefore if D” is different, it must have 
been assigned after the label for C”, and therefore be 
larger. C”, as the smaller of the pair, is assigned to the 
current pixel. The same argument holds for the A”-C” 
pair (point � in Figure 5). This ensures the smallest 
possible label is used for the current label. 

If all mergers are to be resolved as they are 
encountered, then the merger of 5 to 2 at � must be 
propagated to label 6. Furthermore, if label 2 is 
subsequently merged to another label further down the 
row then all three mergers would need to be updated. 
This chaining effect becomes worse as more 
connections are established, and must be avoided for 
real-time applications. Recognizing the fact that the 
merger table is not required until processing the next 
row, the label mergers are stored on a stack for 
processing at the end of the row, as in [14,15]. There, 
each pair of equivalent labels is popped off the stack in 
the reverse order along the row. Since the smaller label 
is always on the right, one pass of the stack resolves all 
mergers for the current row. 

 

1 2 3 3 5 5 2
1 2 3 4 3 5 6 5 2

1 2 3
Figure 5. Example of a series of label mergers. 

Translated labels of the previous row pixels 
are represented by italics 

Since the labels are replaced each row, two merger 
tables are required: one to resolve mergers on the 
previous row (with previous row labels), and one to 
record mergers for the current row. At the end of each 
row, the tables are swapped, with the table of new 
equivalences on the current row becoming the merger 
resolution table for the previous row, and the previous 
table being reset to record new mergers. 

However, only a single translation table is required. 
It is built as the row is scanned, and at the end of the 
row all previous row labels will have been translated to 
the current row so the table may be reset. Such 
resetting may be performed on the fly, while building 
the translation table during the next row. 

3.3. Data Tables 

The data table accumulates the raw data from the 
image required for calculating the features of each 
connected component. Since the image data is not 
retained, feature data must be accumulated for each 
connected component as the image is scanned. Any 
features that may be accumulated incrementally may 
be measured, for example: area, moments, bounding 
box, average colour or pixel value. Additional logic 
maybe required for certain features, such as edge 
detection for measuring perimeter. Otherwise the only 
difference for different features is the width of the data 
table. The data table is indexed by the current pixel 
label, with the corresponding entry updated to reflect 
the inclusion of the current pixel within the region. 
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Whenever two regions merge, the corresponding 
entries in the data table are also merged [6].  

As different labels are used for the previous row and 
current row, two data tables are required. Features are 
combined when regions connect, with the resulting 
combined features stored in the entry indexed by the 
current pixel label. Merged or relabelled entries are 
deleted from the previous row to simplify detection of 
completed objects; any entries not deleted will be 
completed regions. 

This has the additional advantage that once a region 
is completed the features may be passed immediately 
to the classification processor without having to wait 
until the end of the image scan. This further reduces 
the latency with the results of each region being output 
at the end of the first row after the last pixel for the 
region is input. 

4. Algorithm demonstration 

The operation of the algorithm is demonstrated by 
processing of one row in an image, and is shown in 
Figure 7. For each object pixel, the steps for label 
selection and table manipulations are presented in a 
table. Changes to the tables have been highlighted. 

The assigned labels for the last two rows are shown. 
The current row for processing is the last row of the 
image, and the row above is to be referred to as the 
previous row. Two tables are required at the start of 
processing the current row: the merge table for 
previous row labels (PM) and the data table for 
previous row regions (PD). 

In considering the image at the end of the previous 
row, there are four separate regions: two single pixel 
regions with labels 1 and 2, one external arc with label 
3, and an inner arc with labels 4 and 5. Labels 
belonging to a region have the same equivalent label 
unique to the region, which is the smallest label of that 
region. The equivalent label can be obtained from the 
merger table (PM) using the initially assigned label as 
the index. In this example, entries 4 and 5 have the 
same value 4; this indicates that pixels with initial 
labels 4 and 5 belong to region 4. In the data tables, 
existing entries are represented by “#”s. The data of 
label 5 has been merged with that of label 4 as part of 
the merger processing of the previous row. 
Consequently, the 5th entry in the data table for the 
previous row (PD) is 0. 

The following tables are assumed to be initialised 
before the processing of a row: the data table for 
current row regions (CD); the translation table (T) for 
translating previous row labels into current row labels; 
the merger table for the current row labels (CM). In 
practise, these tables may be initialised as the current 
row is processed. 

In the example shown in Figure 7, only the 
processing for the object pixels is shown. To aid 
understanding, the processing is described separately 
for each pixel. In practise, the steps take several clock 
cycles, and are pipelined. In the label selection section, 
the initial labels from the row buffer are looked up in 
the PM to obtain the equivalent label. These are then 
translated by looking up in T. The current labels within 
the neighbourhood context are highlighted with the 
heavy border. These are used to assign the initial label 
for the current row. 

Pixel position 1 demonstrates a merger of two 
previous row regions. A new label is given to the 
current pixel, the data of the regions are merged (over 
3 clock cycles) and the translation table updated. Pixel 
position 2 is a simple label translation, with the data 
from the previous row transferred to the new label. 
Pixel positions 3 and � have no neighbours so far, so 
new labels are given, and data recorded. Note that the 
cached data (DC) for 3 is not actually written to the 
data table because it is updated on the next clock cycle 
at �. Two current row labels merge at pixel positions 
� and �. The data are combined, and the label pairs 
are pushed on a stack for creating the merger table at 
the end of the row. Each time a new label is assigned, 
the corresponding entry in the current row merger table 
(CM) is initialised. 

It is interesting to observe the label mergers from 
the “U” shapes, shown by points � and � in Figure 7. 
Only labels at � need to be resolved. The “U” at �
does not have a current label for previous label 3, so 
the merger is handled solely by the translation table. 
This significantly reduces the need for label resolution 
over the algorithm of [14,15]. 

At the end of the row, the stack is processed to 
update CM. As each pair of labels is popped off the 
stack, the CM entry of the larger label is replaced by 
the CM entry of the smaller label. One pass of the 
stack is sufficient to process all label merges. 

Features of complete regions are also extracted at 
the end of the row. The first entry in PD is still “#” at 
the end of processing the current row. This indicates 
that the region labelled 1 does not extend to the current 
row. The completed regions can be easily detected by 
reading off all non-zero entries as the PD is initialised 
for the next row. This differs from [14,15] which 
occurs at the end of frame. 

5. Comparison of Methods 

The most significant resource required by the 
algorithm are the RAMs used for the row buffer, 
merger tables, translation tables and data tables. 

The row buffer requires a dual-port RAM, with one 
port used for writing the value at the input to the 
buffer, and the other for reading at the output. The 
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length of the RAM is dictated by the width of the 
image, and the width determined by the number of 
labels required. 

There must be one entry in each of the merger and 
data tables for each label used. The number of labels 
needed depends strongly on the size and complexity of 
the image being analysed, with the worst case being ¼ 
of the number of pixels in the image. The width of the 
merger table is determined by the number of labels, 
whereas the width of the data table depends on the 
complexity of the features being extracted. 

The size of the stack for resolving equivalence 
chains depends on the complexity of the image being 
analysed. The worst case is reduced from half the 
width of the image for the previous algorithm [14] to ¼ 
the width of the image for the new algorithm (see Fig. 
6). Each equivalence pair requires 3 clock cycles to 
resolve, although with a dual-port merger table this can 
be pipelined with a throughput of 1 equivalence pair 
per clock cycle [14]. 

 

X X X X
Figure 6. A worst case senario for stack size. 

Entries to the stack are noted by “X” 

5.1. Memory Requirements 

In this section the memory requirements of 
connected components labelling (or analysis for the 
single pass algorithms) are compared. It is assumed 
that a VGA resolution image (640x480 pixels) is being 
processed, obtaining the area of each region in the 
image. The area is one of the simplest features to 
extract, making the hardware easier to debug and test. 
Two scenarios will be compared: one will consider the 
worst case, and will correctly process any 640x480 
image; the other will consider the requirements to 
process an image with 1000-1500 regions (with up to 
4096 labels). The latter case will not correctly handle 
every possible image but will be adequate for most 
typical images. 

In the worst case (Table 1), a 640x480 image uses 
76,800 labels, requiring 17 bits for each label. For the 
typical case (Table 2), 4096 labels requires 12 bits for 
each label. The area requires up to 19 bits for each 
region. 

For the classic connected components labelling 
algorithm, the whole image must be buffered between 
passes, and this is where most of the memory is 
required. A data table and chain stack are not required, 
but the merger table is required for storing the 
equivalence sets. Reducing the number of labels has a 
small effect on the image buffer (from the reduced bit 
width), but has a significant effect on size of the 
equivalence table. 

For the original single-pass algorithm of [14,15], 
there are significant savings because only one row 
needs to be buffered rather than the whole image. The 
merger table is the same size as for the classic 
algorithm. The data table is the same length as the 
merger table, but is 19 bits wide. This is where most of 
the memory is required, and this will be made worse 
with more complex region data extracted. In the worst 
case, there is only a small improvement over the 
classic algorithm, but with a reduced number of labels 
the storage can be reduced significantly. The chain 
stack must be 320 deep in the worst case, but can be 
significantly reduced for typical images (16 allowed 
here). For typical images, the original single-pass 
algorithm requires significantly less memory than the 
classic algorithm. 

Table 1. Worst case memory (bits) 
Classic

two pass
Original

single pass
Optimised
single pass

Row buffer 5,222,400 10,880 5,760
Merger table 1,305,600 1,305,600 5,760

Data table 1,459,200 12,160
Chain stack 10,880 2,880

Total 6,528,000 2,786,560 26,560

Table 2. Typical memory (bits) for 4096 labels 
Classic

two pass
Original

single pass
Optimised
single pass

Row buffer 3.686,400 7,680 4,480
Merger table 49,152 49,152 1,792

Data table 77,824 4.864
Chain stack 384 224

Total 3,735,552 135,040 11,360

The number of labels required by the optimised 
algorithm is only ½ the width of the image. This 
significantly reduces the size of both the merger and 
data tables. For a typical image, 128 labels have been 
allocated (per row), reducing the storage required for 
the merger and data tables further. Overall, label reuse 
has greatly improved the memory requirement for the 
single pass algorithm. 

5.2. Implementation Requirements 

The algorithm was developed using Handel-C with 
the Celoxica DK5 Design Suite. The implementation 
was targeted for a Celoxica RC300 evaluation board 
which contains a Xilinx Virtex-II XC2V6000 FPGA. 

The algorithm was implemented for the worst case, 
processing of a 640x480 image, measuring the area of 
each region. No external RAM was used. See Table 3 
for details. Note that this also includes a small amount 
of logic for generating test data and producing a VGA 
output for verifying correct functionality. 

190



With the low logic cost of the design, the rest of the 
FPGA can be used to extract additional features, 
implement the object classification stage and other 
processes. The system operates at the at the input data 
rate; at this frequency, it is sufficient for processing of 
VGA resolution video streams at over 100 frames per 
second. 

Table 3. Resources used 
Block RAMS 4 of 144 2.8% 
Slice flip flops 600 67584 0.9% 

Logic 958   
Route through 403   
32x1 RAM 384   
Shift registers 12   

LUTs 

Total 1757 67584 2.6% 
Maximum clock frequency 40.63 MHz  

6. Conclusion 

The classic two-pass connected components 
algorithm is not well suited for processing streamed 
images because it requires buffering of the 
intermediate image between passes. A previous single-
pass algorithm removed the buffering requirement, and 
enables the whole algorithm to be implemented as a 
single streamed pipeline. That algorithm, however, still 
required significant storage for gathering the feature 
data in the worst case, although this can be reduced 
significantly for typical images. 

A new, optimised, algorithm is proposed which 
significantly reduces the storage requirement by 
recycling labels between rows. The worst case storage 
requirements are no longer proportional to the area of 
the image, but to the image width. This enables even 
worst case images to be processed by a relatively 
modest sized FPGA. This is demonstrated by an 
implementation that only uses a small fraction of the 
resources available on an FPGA, allowing the 
remaining resourced to be used for other processing 
within the application. 

A side effect of recycling the labels is that it enables 
completed regions to be detected at the end of the row 
following the region. This further improves the latency 
of algorithm over the original single-pass algorithm. 

The approach we have taken in implementing 
connected components analysis is to adapt and remap 
an algorithm onto an FPGA rather than use the FPGA 
to provide acceleration of an existing algorithm. This 
enables the resources available on the FPGA to be used 
more effectively, and also allows a significantly 
improved implementation. In this instance, it has led to 
an improved algorithm that significantly reduces the 
memory needed, by over 100 times, and reduces the 
latency from the end of the frame after the object is 
completed to only one row after the object is complete. 

The optimised algorithm is suitable, not only for FPGA 
implementation, but for any embedded processor with 
limited resources. 
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Binary input image; last row is current row of processing 
 

1 2 3 4 5 4 4 3
1 2 3 2 4 1

Tables at start of row
CD 0 0 0 0 0
PD # # # # 0
T 0 0 0 0 0
CM 0 0 0 0 0
PM 1 2 3 4 4

Label Selection  Table manipulation 
� Row buffer 2 0 3

After merger table 2 0 3
After translation 0 0 0

0

New
label

1

DC = CP ⊕ PD[2] 
PD[2] = 0 
T[2] = 1 
CM[1] = 1 

 

DC = DC ⊕ PD[3]
PD[3] = 0 
T[3] = 1 

 

CD[1] = DC 
 

CD # 0 0 0 0
PD # 0 0 # 0
T 0 1 1 0 0
CM 1 0 0 0 0

� Row buffer 0 4 0
After merger table 0 4 0
After translation 0 0 0

0

New
label

2

DC = CP ⊕ PD[4] 
PD[4] = 0 
T[4] = 2 
CM[2] = 2 

 

CD[2] = DC  CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 0 0 0

� Row buffer 0 0 0
After merger table 0 0 0
After translation 0 0 0

0

New
label

3

DC = CP 
 

CM[3] = 3 

 

CD[3] = DC  CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 0 0

� Row buffer 0 0 5
After merger table 0 0 4
After translation 0 0 2

3

Min
label

2

DC = DC ⊕ CP ⊕ CD[2]
CD[3] = 0 
 
Stack (3,2) 

 

CD[2] = DC  CD # # 0 0 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 0 0

� Row buffer 0 0 0
After merger table 0 0 0
After translation 0 0 0

0

New
label

4

DC = CP 
 

CM[4] = 4 

 

CD[4] = DC  CD # # 0 # 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 4 0

� Row buffer 4 0 3
After merger table 4 0 3
After translation 2 0 1

0

Min
label

1

DC = CP ⊕ CD[2] 
CD[2] = 0 
 
Stack (2,1) 

 

DC = DC ⊕ CD[1] CD[1] = DC 
 

CD # 0 0 # 0
PD # 0 0 0 0
T 0 1 1 2 0
CM 1 2 3 4 0

At end of the row, the stack is processed update current row merger table: 
Stack 

(2,1) 
(3,2) 

 

CM[2] = CM[1] 
CM[3] = CM[2] 

 

CM 1 2 3 4 0
1 1 3 4 0
1 1 1 4 0

Figure 7. Processing of a single row: In the label selection, the current neighbourhood context is 
shown with heavy border. Abbreviations: CD – current row data table; DC – data cache; PD – 

previous row data table; T – translation table; CM – current row merger table; PM – previous row 
merger table; ⊕ – data combination operation; # – valid region data. Note that the table 

manipulations are pipelined over up to 3 clock cycles 
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